BZOJ5289 HNOI/AHOI2018排列(贪心+堆)
题面描述的相当绕,其实就是如果ai=j,重排后ai要在aj之后。同时每个ai有附属属性wi,要求最大化重排后的Σiwi。
容易发现这事实上构成一张图,即由j向i连边。由于每个点入度为1或0,该图是基环外向树森林,并且如果图中有环显然无解,所以这张图就是个森林。把0也看做一个点后变成一棵树。由于其是基环树判环并查集就够了。
问题变为对该树找一个删点的顺序使价值最大,要求删了父亲才能删儿子。显然应该尽量先删价值小的,但直接贪心肯定不对。
如果树中的最小值的父亲此时已经被删,立即将其删除一定是最优的。那么不妨考虑将这两个点合并。稍微推一下式子可以发现合并后用权值平均值作为新权值(不是贡献)即可。堆维护。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cassert>
using namespace std;
#define ll long long
#define N 500010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,a[N],fa[N],f[N],p[N],t;
ll ans;
bool flag[N];
struct data{int to,nxt;
}edge[N];
struct data2
{
int id,cnt;ll tot,val;
bool operator <(const data2&a) const
{
return tot*a.cnt>a.tot*cnt;
}
bool operator !=(const data2&a) const
{
return id!=a.id||cnt!=a.cnt||tot!=a.tot||val!=a.val;
}
}lazy[N];
priority_queue<data2> q;
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
void dfs(int k)
{
for (int i=p[k];i;i=edge[i].nxt)
f[edge[i].to]=k,dfs(edge[i].to);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5289.in","r",stdin);
freopen("bzoj5289.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++) fa[i]=i;
for (int i=;i<=n;i++)
{
int x=read();addedge(x,i);
int p=find(x),q=find(i);
if (p!=q) fa[q]=p;else {cout<<-;return ;}
}
dfs();
for (int i=;i<=n;i++)
{
a[i]=read(),fa[i]=i;
lazy[i]=(data2){i,,a[i],a[i]};q.push(lazy[i]);
}
flag[]=;fa[]=;int cnt=;
for (int i=;i<=n;i++)
{
while (q.top()!=lazy[q.top().id]) q.pop();
data2 x=q.top();q.pop();int u=find(f[x.id]);fa[x.id]=u;
if (flag[u]) ans+=x.val+cnt*x.tot,cnt+=x.cnt,flag[x.id]=;
else lazy[u].val+=lazy[u].cnt*x.tot+x.val,lazy[u].id=u,lazy[u].cnt+=x.cnt,lazy[u].tot+=x.tot,q.push(lazy[u]);
}
cout<<ans;
return ;
}
BZOJ5289 HNOI/AHOI2018排列(贪心+堆)的更多相关文章
- [HNOI/AHOI2018]排列 贪心
题面 题解: 把题面的限制换成中文: 如果排在第k位的下标 = 排在第j位的值 ,那么k < j 换一个描述方式: 一个值为x的数要排在第x个数后面. 再换一个描述方式: \(fa[i] = a ...
- 【LG4437】[HNOI/AHOI2018]排列
[LG4437][HNOI/AHOI2018]排列 题面 洛谷 题解 题面里这个毒瘤的东西我们转化一下: 对于\(\forall k,j\),若\(p_k=a_{p_j}\),则\(k<j\). ...
- 洛谷 P4437 [HNOI/AHOI2018]排列(贪心+堆,思维题)
题面传送门 开始 WA ycx 的遗产(bushi 首先可以将题目转化为图论模型:\(\forall i\) 连边 \(a_i\to i\),然后求图的一个拓扑序 \(b_1,b_2,\dots b_ ...
- 【洛谷 P4437】 [HNOI/AHOI2018]排列(贪心,堆)
题目链接 如果\(j<=k,a_{p[j]}!=p[k]\)可以理解为如果\(a_{p[j]}=p[k]\),那么\(k\)一定要放在\(j\)前面,也就是\(a_j\)在\(j\)前面. 于是 ...
- BZOJ5289 & 洛谷4437:[HNOI/AHOI2018]排列——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5289 https://www.luogu.org/problemnew/show/P4437 考虑 ...
- [HNOI/AHOI2018]排列
[Luogu4437] 如果\(a[i]=j\)则序列\(p[]\)中\(j\)必须排在\(i\)前面,如果\(j\)不在范围内则不管,求一个式子\(\sum_{i=1}^n iw_{p[i]}\)的 ...
- Poj2054 color a tree && [HNOI/AHOI2018]排列
https://zybuluo.com/ysner/note/1120723 题面 原题 某省选强化题 大致意思是给你一颗树,选父亲后才能选儿子. 每个点对答案的贡献为你在第几次选这个点 × 该点权值 ...
- luogu P4437 [HNOI/AHOI2018]排列
luogu 问题本质是把\(a_i\)作为\(i\)的父亲,然后如果有环就不合法,否则每次要取数,要满足取之前他的父亲都被取过(父亲为0可以直接取),求最大价值 贪心想法显然是要把权值大的尽量放在后面 ...
- 【BZOJ5289】[HNOI2018]排列(贪心)
[BZOJ5289][HNOI2018]排列(贪心) 题面 BZOJ 洛谷 题解 这个限制看起来不知道在干什么,其实就是找到所有排列\(p\)中,\(p_k=x\),那么\(k<j\),其中\( ...
随机推荐
- TCP/IP理解
目录 1.概述 2.TCP/IP寻址及其协议族 3.TCP/IP 邮件 1.概述 介绍:什么是TCP/IP? TCP/IP协议是对计算机必须遵守的规则的描述,遵守了规则才能通信. 应用: 浏览器与服务 ...
- Python+Selenium UI自动化测试环境搭建及使用
一什么是Selenium ? Selenium 是一个浏览器自动化测试框架,它主要用于web应用程序的自动化测试,其主要特点如下:开源.免费:多平台.浏览器.多语言支持:对web页面有良好的支持:AP ...
- OpenGL(1)-环境搭建
写在前面 工作几年,开始沉心做技术,对自己的知识进行梳理. OpenGL是由khronos组织制定并维护的规范,并不是API. OpenGL在3.2之前采用的是立即渲染模式(固定渲染管线),3.2之后 ...
- printf命令详解
基础命令学习目录首页 本文是Linux Shell系列教程的第(八)篇,更多shell教程请看:Linux Shell系列教程 在上一篇:Linux Shell系列教程之(七)Shell输出这篇文章中 ...
- 作业 20181127-3 互评Beta版本
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2448 组名:可以低头,但没必要 组长:付佳 组员:张俊余 李文涛 孙赛佳 ...
- 软件功能说明书beta修订
贪吃蛇(单词版)软件功能说明书beta修订 1 开发背景 “贪吃蛇”这个游戏对于80,90后的人来说是童年的记忆,可以将其说为是一个时代的经典,实现了传统贪吃蛇的游戏功能:现在人们对英语的重视程度越来 ...
- SpringMvc跨域支持
SpringMvc跨域支持 在controller层加上注解@CrossOrigin可以实现跨域 该注解有两个参数 1,origins : 允许可访问的域列表 2,maxAge:飞行前响应的缓存持续 ...
- Date 类的使用
package com.Date.Math; import java.text.ParseException; import java.text.SimpleDateFormat; import ja ...
- java异常处理及自定义异常的使用
1. 异常介绍 异常机制可以提高程序的健壮性和容错性. Throwable:Throwable是java语言所有错误或异常的超类. 有两个子类Error和Exception. 1.1 编译期异常 编译 ...
- angularJS1笔记-(15)-自定义指令(accordion伸缩菜单原始实现)
index.html: <!DOCTYPE html> <html lang="en"> <head> <meta charset=&qu ...