考虑对于每一个x有多少个合法解。得到ax+by=c形式的方程。如果gcd(x,y)|c,则a在0~y-1范围内的解的个数为gcd(x,y)。也就是说现在所要求的是Σ[gcd(x,P)|Q]*gcd(x,P)。

  对这个式子套路地枚举gcd,可以得到Σdφ(P/d) (d|gcd(P,Q))。质因子间相互独立,考虑每个质因子的贡献再累乘。如果d取完了P的某项质因子,那么该质因子的贡献为piqi,否则为(pi-1)piqi-1。于是rho分解完质因数就可以算了。

  注意特判Q=0。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define P 1000000007
#define ll long long
ll read()
{
ll x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,cntp=,cntq=,ans=;
ll p[],q[],a[],b[],c[],d[];
ll gcd(ll n,ll m){return m==?n:gcd(m,n%m);}
ll ksc(ll a,ll b,ll p)
{
ll t=a*b-(ll)((long double)a*b/p+0.5)*p;
return (t<)?t+p:t;
}
ll ksm(int a,ll k,ll p)
{
if (k==) return ;
ll tmp=ksm(a,k>>,p);tmp=ksc(tmp,tmp,p);
if (k&) return ksc(tmp,a,p);else return tmp;
}
bool check(int k,ll n)
{
if (k>=n) return ;
ll p=n-;
ll t=ksm(k,p,n);
if (t==n-) return ;
if (t!=) return ;
while (!(p&))
{
p>>=;
ll t=ksm(k,p,n);
if (t==n-) return ;
if (t!=) return ;
}
return ;
}
bool Miller_Rabin(ll n)
{
if (n==) return ;
for (int i=;i*i<=min(n,100ll);i++)
if (n%i==) return n==i;
if (n<=) return ;
else return check(,n)&&check(,n)&&check(,n)&&check(,n)&&check(,n)&&n!=;
}
ll f(ll x,ll n,int c){return (ksc(x,x,n)+c)%n;}
void Pollard_Rho(ll n,ll *a,int &cnt)
{
if (n==) return;
if (Miller_Rabin(n)) {a[++cnt]=n;return;}
if (n<=) for (int i=;i<=n;i++) if (n%i==&&Miller_Rabin(n/i)) {a[++cnt]=n/i;Pollard_Rho(i,a,cnt);return;}
while ()
{
int c=rand()%(n-)+;
ll x=(rand()%n+c)%n,y=x;
do
{
ll z=gcd(abs(x-y),n);
if (z>&&z<n) {Pollard_Rho(n/z,a,cnt),Pollard_Rho(z,a,cnt);return;}
}while ((x=f(x,n,c))!=(y=f(f(y,n,c),n,c)));
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3481.in","r",stdin);
freopen("bzoj3481.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();srand();
cntp=;for (int i=;i<=n;i++) p[i]=read(),Pollard_Rho(p[i],a,cntp);
cntq=;for (int i=;i<=n;i++) q[i]=read(),Pollard_Rho(q[i],b,cntq);
sort(a+,a+cntp+);sort(b+,b+cntq+);
for (int i=;i<=cntp;i++)
{
int t=i;
while (a[t+]==a[i]) t++;
c[i]=t-i+;i=t;
}
for (int i=;i<=cntq;i++)
{
int t=i;
while (b[t+]==b[i]) t++;
d[i]=t-i+;i=t;
}
for (int i=;i<=cntp;i++)
if (c[i]&&!c[i-])
for (int j=i-;j&&!c[j];j--) c[j]=c[j+],c[j+]=;
cntp=unique(a+,a+cntp+)-a-;
for (int i=;i<=cntq;i++)
if (d[i]&&!d[i-])
for (int j=i-;j&&!d[j];j--) d[j]=d[j+],d[j+]=;
cntq=unique(b+,b+cntq+)-b-;
for (int i=;i<=cntp;i++) a[i]%=P;
for (int i=;i<=cntq;i++) b[i]%=P;
if (b[]==)
{
cntq=cntp;
for (int i=;i<=cntp;i++) b[i]=a[i],d[i]=c[i];
}
for (int j=;j<=cntp;j++)
{
int x=;
for (int i=;i<=cntq;i++)
if (b[i]==a[j]) {x=d[i];break;}
if (x<c[j]) ans=1ll*ans*ksm(a[j],c[j]-,P)%P*(x+)%P*(a[j]-)%P;
else ans=1ll*ans*ksm(a[j],c[j]-,P)%P*(1ll*c[j]*(a[j]-)%P+a[j])%P;
}
cout<<ans<<endl;
return ;
}

BZOJ3481 DZY Loves Math III(数论+Pollard_Rho)的更多相关文章

  1. Bzoj3481 DZY Loves Math III

    Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 310  Solved: 65 Description Input Output Sample Input ...

  2. BZOJ3560 DZY Loves Math V 数论 快速幂

    原文链接http://www.cnblogs.com/zhouzhendong/p/8111725.html UPD(2018-03-26):蒟蒻回来重新学数论了.更新了题解和代码.之前的怼到后面去了 ...

  3. BZOJ3561 DZY Loves Math VI 数论 快速幂 莫比乌斯反演

    原文链接http://www.cnblogs.com/zhouzhendong/p/8116330.html UPD(2018-03-26):回来重新学数论啦.之前的博客版面放在更新之后的后面. 题目 ...

  4. bzoj 3481 DZY Loves Math III——反演+rho分解质因数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3481 推推式子发现:令Q=gcd(P,Q),ans=Σ(d|Q) d*phi(P/d).把 ...

  5. DZY Loves Math系列

    link 好久没写数学题了,再这样下去吃枣药丸啊. 找一套应该还比较有意思的数学题来做. [bzoj3309]DZY Loves Math 简单推一下. \[\sum_{i=1}^n\sum_{j=1 ...

  6. DZY Loves Math 系列详细题解

    BZOJ 3309: DZY Loves Math I 题意 \(f(n)\) 为 \(n\) 幂指数的最大值. \[ \sum_{i = 1}^{a} \sum_{j = 1}^{b} f(\gcd ...

  7. 【BZOJ3561】DZY Loves Math VI (数论)

    [BZOJ3561]DZY Loves Math VI (数论) 题面 BZOJ 题解 \[\begin{aligned} ans&=\sum_{i=1}^n\sum_{j=1}^m\sum_ ...

  8. 【BZOJ 3561】 3561: DZY Loves Math VI (莫比乌斯,均摊log)

    3561: DZY Loves Math VI Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 205  Solved: 141 Description ...

  9. BZOJ 3309: DZY Loves Math

    3309: DZY Loves Math Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 761  Solved: 401[Submit][Status ...

随机推荐

  1. (webapp)微信和safri 对于html5 部分功能不兼容,多选或单选下拉框去除边框无效果。

    1 appearance:none; 2 -moz-appearance:none; /* Firefox */ 3 -webkit-appearance:none; /* Safari 和 Chro ...

  2. CSS文本溢出处理方式

    1. 单行文本溢出省略号效果 .ellipsis { overflow:hidden; white-space:nowrap; text-overflow:ellipsis; } <div cl ...

  3. EVA无法连接

    EVA在11月19日更新后,发现DMS无法与EVA进行链接,在DMS中EVA连接测试报告中有如下报错:   根本原因   解决方法/修复 1.在本地电脑系统盘中查找文件夹“.eva-prod”, 并拷 ...

  4. charles工具教程

    本文的内容主要包括: Charles 的简介 如何安装 Charles 将 Charles 设置成系统代理 Charles 主界面介绍 过滤网络请求 截取 iPhone 上的网络封包 截取 Https ...

  5. NIO - Buffer

    NIO —— Buffer源码分析 Buffer的类结构 底层的基础类是抽象类-Buffer,其中定义了四个变量:capacity(容量),limit(限制),position(位置),mark(标记 ...

  6. 初试Shell脚本

    背景 临上线前测试比较努力,遇到闪退或者其他问题,会把日志包打给我,由于app内存限制,目前每次打包都是1m大小,所以有时查找问题的上下文比较吃力.同时由于日志比较多,根据关键词过滤的需求越来越重要. ...

  7. python虚拟环境管理之virtualenv,virtualenvwrapper,pipenv,conda

    虚拟环境的作用 使python环境拥有独立的包,避免污染原本的python环境.为不同的项目创建不同的环境可以避免安装的库过于庞大和相互干扰. 例如你想在同一台机器上开发用python2和python ...

  8. Spring入门学习笔记(1)

    目录 Spring好处 依赖注入 面向面编程(AOP) Spring Framework Core Container Web Miscellaneous 编写第一个程序 IoC容器 Spring B ...

  9. docker pull下来的镜像放哪儿了?

    本机docker版本 docker –version Docker version 1.进入docker 目录 root@Rightsec:~# cd /var/lib/docker root@Rig ...

  10. nodejs 搭建自己的简易缓存cache管理模块

    http://www.infoq.com/cn/articles/built-cache-management-module-in-nodejs/ 为什么要搭建自己的缓存管理模块? 这个问题其实也是在 ...