这篇paper使用DropConnect来规则化神经网络。dropconnect和dropout的区别如下图所示。dropout是随机吧隐含层的输出清空,而dropconnect是input unit到hidden unit输入权值以1-p的概率清0

dropout的关键公式,其中m是size为d的列向量格式如下[0 0 1 0 0 0 1 1 ]T .这样的话就把隐层到输出层以一定的概率清空,概率一般为0.5

dropconnect的关键公式,其中M和上面的m一个含义。这个就是说从输入层到隐层就要有一定的概率来清空。

dropconnect的算法流程如下,和普通的算法不同的地方就是随机sample一个M mask,活动函数里面需要乘这个M

inference的过程如下图,对DropConnect进行推理时,采用的是对每个输入(每个隐含层节点连接有多个输入)的权重进行高斯分布的采样。该高斯分布的均值与方差当然与前面的概率值p有关,满足的高斯分布为:

论文笔记(2)-Dropout-Regularization of Neural Networks using DropConnect的更多相关文章

  1. 论文笔记《Notes on convolutional neural networks》

    这是个06年的老文章了,但是很多地方还是值得看一看的. 一.概要 主要讲了CNN的Feedforward Pass和 Backpropagation Pass,关键是卷积层和polling层的BP推导 ...

  2. 【论文翻译】MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

    MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 论文链接:https://arxi ...

  3. 深度学习笔记(三 )Constitutional Neural Networks

    一. 预备知识 包括 Linear Regression, Logistic Regression和 Multi-Layer Neural Network.参考 http://ufldl.stanfo ...

  4. 论文笔记:dropout

    Improving neural networks by preventing co-adaptation of feature detectors arXiv preprint arXiv: 120 ...

  5. 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week2 Neural Networks Basics课堂笔记

    Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week2 Neural Networks Basics 2.1 ...

  6. 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week1 Introduction to deep learning课堂笔记

    Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week1 Introduction to deep learn ...

  7. 【论文阅读】Learning Dual Convolutional Neural Networks for Low-Level Vision

    论文阅读([CVPR2018]Jinshan Pan - Learning Dual Convolutional Neural Networks for Low-Level Vision) 本文针对低 ...

  8. 论文解读二代GCN《Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering》

    Paper Information Title:Convolutional Neural Networks on Graphs with Fast Localized Spectral Filteri ...

  9. 【论文笔记】Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition

    Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition 2018-01-28  15:4 ...

  10. 论文笔记:ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks

    ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks2018-03-05  11:13:05   ...

随机推荐

  1. 关于使用service的上下文和activity来读取sharedpreferences的同步问题

    比如我用activity 对象 mainactivity 的context 获取了sharedpreferences对象,并putString(context, "demo", & ...

  2. oracle改变表中列的编码

    ALTER TABLE table_name CHANGE `name` `name` VARCHAR(255) CHARACTER SET utf8;

  3. MyBatis多对多查询

    -------------------siwuxie095                                 MyBatis 多对多查询         以订单和商品为例,即 一个订单可 ...

  4. 【校招面试 之 C/C++】第18题 C++ 中的隐式转换以及explicit关键字

    1.什么是隐式转换: 众所周知,C++的基本类型中并非完全的对立,部分数据类型之间是可以进行隐式转换的. 所谓隐式转换,是指不需要用户干预,编译器私下进行的类型转换行为.很多时候用户可能都不知道进行了 ...

  5. [leetcode]239. Sliding Window Maximum滑动窗口最大值

    Given an array nums, there is a sliding window of size k which is moving from the very left of the a ...

  6. 在java工程中导入jar包的注意事项

    在java工程中导入jar包后一定要bulid path,不然jar包不可以用.而在java web工程中导入jar包后可以不builld path,但最好builld path.

  7. tcl&redis安装

    http://www.linuxfromscratch.org/blfs/view/cvs/general/tcl.html tcl http://redis.io/topics/quickstart

  8. 测试rar/bz2/tar.gz/gz压缩文档完整性

    #gz文件gzip -t *.gz#bz2文件tar jtvf archive.tar.bz2#tar.gz文件tar jtvf archive.tar.gz#rar文件unrar t 1.rar

  9. Golang之waitgroup用法

    我敲下一堆代码,终于长出了果实,今天是个伟大日子 package main import ( "fmt" "sync" "time" ) / ...

  10. Jmeter发送某个request时而成功,时而失败(处理办法:失败的时候尝试重新发送这个HTTP request)

    Jmeter发送某个request时而成功,时而失败 Maybe it’s Jmeter’s problem, after all, is not a commercial software. And ...