这篇paper使用DropConnect来规则化神经网络。dropconnect和dropout的区别如下图所示。dropout是随机吧隐含层的输出清空,而dropconnect是input unit到hidden unit输入权值以1-p的概率清0

dropout的关键公式,其中m是size为d的列向量格式如下[0 0 1 0 0 0 1 1 ]T .这样的话就把隐层到输出层以一定的概率清空,概率一般为0.5

dropconnect的关键公式,其中M和上面的m一个含义。这个就是说从输入层到隐层就要有一定的概率来清空。

dropconnect的算法流程如下,和普通的算法不同的地方就是随机sample一个M mask,活动函数里面需要乘这个M

inference的过程如下图,对DropConnect进行推理时,采用的是对每个输入(每个隐含层节点连接有多个输入)的权重进行高斯分布的采样。该高斯分布的均值与方差当然与前面的概率值p有关,满足的高斯分布为:

论文笔记(2)-Dropout-Regularization of Neural Networks using DropConnect的更多相关文章

  1. 论文笔记《Notes on convolutional neural networks》

    这是个06年的老文章了,但是很多地方还是值得看一看的. 一.概要 主要讲了CNN的Feedforward Pass和 Backpropagation Pass,关键是卷积层和polling层的BP推导 ...

  2. 【论文翻译】MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

    MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 论文链接:https://arxi ...

  3. 深度学习笔记(三 )Constitutional Neural Networks

    一. 预备知识 包括 Linear Regression, Logistic Regression和 Multi-Layer Neural Network.参考 http://ufldl.stanfo ...

  4. 论文笔记:dropout

    Improving neural networks by preventing co-adaptation of feature detectors arXiv preprint arXiv: 120 ...

  5. 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week2 Neural Networks Basics课堂笔记

    Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week2 Neural Networks Basics 2.1 ...

  6. 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week1 Introduction to deep learning课堂笔记

    Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week1 Introduction to deep learn ...

  7. 【论文阅读】Learning Dual Convolutional Neural Networks for Low-Level Vision

    论文阅读([CVPR2018]Jinshan Pan - Learning Dual Convolutional Neural Networks for Low-Level Vision) 本文针对低 ...

  8. 论文解读二代GCN《Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering》

    Paper Information Title:Convolutional Neural Networks on Graphs with Fast Localized Spectral Filteri ...

  9. 【论文笔记】Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition

    Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition 2018-01-28  15:4 ...

  10. 论文笔记:ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks

    ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks2018-03-05  11:13:05   ...

随机推荐

  1. Mysql update 一个表中自己的数据

    update  table ucf, table t2 set ucf.pcid = t2.pcid where t2.name = 'liming' and t2.gid= ucf.gid and ...

  2. 关于时间查询的sql语句

    今天 select * from 表名 where to_days(时间字段名) = to_days(now()); 昨天 SELECT * FROM 表名 WHERE TO_DAYS( NOW( ) ...

  3. 慕课网access_token的获取

    access_token的接口是微信公众号一个基础接口,access_token接口微信公众号一个非常重要的接口 access_token是微信公众号的全局唯一票据,公众号的所有接口的调用都需要使用到 ...

  4. ECMAScript5之JSON对象属性的遍历顺序

    测试浏览器 Chrome.Safari 一 键可以用parseInt解析成整数的,按数值升序顺序. var intObj = { '3.3' : 3.3, '2' : 222, '1' :111 } ...

  5. TZOJ 1840 Jack Straws(线段相交+并查集)

    描述 In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the ta ...

  6. 如何转换pdf文档为word文档--先标记下,本周把这个问题知识掌握

    http://developer.51cto.com/art/201803/567539.htm

  7. php多进程中的阻塞与非阻塞

    我们通过pcntl_fork来创建子进程,使用pcntl_wait和pcntl_waitpid来回收子进程. 子进程退出后,父进程没有及时回收,就会产生僵尸进程.   例1: <?php def ...

  8. Sql自定义表类型批量导入数据

    -- 创建自定义表类型 CREATE TYPE [dbo].[App_ProductTable] AS TABLE( [p_name] [varchar](50) NOT NULL, [p_audio ...

  9. 2018年这些UI设计趋势正在流行,跟上必拿高薪!

    数字设计领域和时尚圈是一样的,总会有各种各样的趋势让人眼花缭乱.无论是用户界面的视觉元素,还是用户体验的细节,总有许多值得说道的新玩法和新方向.就目前来看,UI设计的大趋势是更加大胆新颖的视觉设计,通 ...

  10. dumpbin 查看dll中的导出函数

    C:\Program Files (x86)\Microsoft Visual Studio 14.0>dumpbin -exports E:\20171110\Release\aa.dll h ...