poj 2195 Going Home(最小费最大流)
poj 2195 Going Home
Description
On a grid map there are n little men and n houses. In each unit time, every little man can move one unit step, either horizontally, or vertically, to an adjacent point. For each little man, you need to pay a $1 travel fee for every step he moves, until he enters a house. The task is complicated with the restriction that each house can accommodate only one little man.
Your task is to compute the minimum amount of money you need to pay in order to send these n little men into those n different houses. The input is a map of the scenario, a ‘.’ means an empty space, an ‘H’ represents a house on that point, and am ‘m’ indicates there is a little man on that point.
You can think of each point on the grid map as a quite large square, so it can hold n little men at the same time; also, it is okay if a little man steps on a grid with a house without entering that house.
Input
There are one or more test cases in the input. Each case starts with a line giving two integers N and M, where N is the number of rows of the map, and M is the number of columns. The rest of the input will be N lines describing the map. You may assume both N and M are between 2 and 100, inclusive. There will be the same number of ‘H’s and ‘m’s on the map; and there will be at most 100 houses. Input will terminate with 0 0 for N and M.
Output
For each test case, output one line with the single integer, which is the minimum amount, in dollars, you need to pay.
Sample Input
2 2
.m
H.
5 5
HH..m
…..
…..
…..
mm..H
7 8
…H….
…H….
…H….
mmmHmmmm
…H….
…H….
…H….
0 0
Sample Output
2
10
28
题目大意:给你一个N × M的含有“H”, “m”。 “.”的二维图。“H”代表HOME。 “m”代表man,“.”代表空。man到HOME的距离为两点坐标的X坐标之差的绝对值加上Y坐标之差的绝对值。man的数量与HOME的数量同样。
如今。问,要是全部的man都回到HOME走的最短的路程总和为多少。
解题思路:还是建图的问题。依据这张二位的图,建一张流图。设置一个超级源点,连向全部的man,容量为1。设置一个超级汇点。使全部的HOME都连向超级汇点,容量为1。
把全部的HOME都拆成两个点。连接的容量为1。每一个房子仅仅能住一个人。
每一个man连向全部的房子,容量为1。费用为二维图上,man点到HOME点的距离。图建完以后。求最小费最大流。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <queue>
using namespace std;
const int N = 505;
const int NN = 105;
const int MM = 15005;
const int INF = 0x3f3f3f3f;
const int OF = 100;
const int FIN = 500;
typedef long long ll;
int n, m, cntH, cntM, s, t;
struct Node{
int x, y;
}H[NN], M[NN];
char gra[NN][NN];
int pre[N], inq[N];
ll a[N], d[N];
struct Edge{
int from, to;
ll cap, flow;
ll cos;
};
vector<Edge> edges;
vector<int> G[MM];
void init() {
for (int i = 0; i < MM; i++) G[i].clear();
edges.clear();
}
void addEdge(int from, int to, ll cap, ll flow, ll cos) {
edges.push_back((Edge){from, to, cap, 0, cos});
edges.push_back((Edge){to, from, 0, 0, -cos});
int m = edges.size();
G[from].push_back(m - 2);
G[to].push_back(m - 1);
}
int getDis(int x, int y) {
return abs(M[x].x - H[y].x) + abs(M[x].y - H[y].y);
}
void input() {
cntH = cntM = 0;
for (int i = 0; i < n; i++) scanf("%s", gra[i]);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (gra[i][j] == 'H') {
H[cntH].x = i;
H[cntH++].y = j;
} else if (gra[i][j] == 'm') {
M[cntM].x = i;
M[cntM++].y = j;
}
}
}
for (int i = 1; i <= cntH; i++) {
addEdge(i, i + OF, 1, 0, 0);
}
for (int i = 1; i <= cntM; i++) {
for (int j = 1; j <= cntH; j++) {
addEdge(i + 2 * OF, j, 1, 0, getDis(i - 1, j - 1));
}
}
for (int i = 1; i <= cntM; i++) {
addEdge(0, i + 2 * OF, 1, 0, 0);
}
for (int i = 1; i <= cntH; i++) {
addEdge(i + OF, t, 1, 0, 0);
}
}
int BF(int s, int t, ll& flow, ll& cost) {
queue<int> Q;
memset(inq, 0, sizeof(inq));
memset(a, 0, sizeof(a));
memset(pre, 0, sizeof(pre));
for (int i = 0; i < N; i++) d[i] = INF;
d[s] = 0;
a[s] = INF;
inq[s] = 1;
int flag = 1;
pre[s] = 0;
Q.push(s);
while (!Q.empty()) {
int u = Q.front(); Q.pop();
inq[u] = 0;
for (int i = 0; i < G[u].size(); i++) {
Edge &e = edges[G[u][i]];
if (e.cap > e.flow && d[e.to] > d[u] + e.cos) {
d[e.to] = d[u] + e.cos;
a[e.to] = min(a[u], e.cap - e.flow);
pre[e.to] = G[u][i];
if (!inq[e.to]) {
inq[e.to] = 1;
Q.push(e.to);
}
}
}
flag = 0;
}
if (d[t] == INF) return 0;
flow += a[t];
cost += (ll)d[t] * (ll)a[t];
for (int u = t; u != s; u = edges[pre[u]].from) {
edges[pre[u]].flow += a[t];
edges[pre[u]^1].flow -= a[t];
}
return 1;
}
int MCMF(int s, int t, ll& cost) {
ll flow = 0;
cost = 0;
while (BF(s, t, flow, cost));
return flow;
}
int main() {
while (scanf("%d %d\n", &n, &m) == 2, n, m) {
s = 0, t = FIN;
init();
input();
ll cost;
MCMF(s, t, cost);
printf("%lld\n", cost);
}
return 0;
}
poj 2195 Going Home(最小费最大流)的更多相关文章
- POJ 2195 Going Home 最小费用最大流 尼玛,心累
D - Going Home Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Subm ...
- POJ 2195 - Going Home - [最小费用最大流][MCMF模板]
题目链接:http://poj.org/problem?id=2195 Time Limit: 1000MS Memory Limit: 65536K Description On a grid ma ...
- poj 2195 Going Home(最小费用最大流)
题目:http://poj.org/problem?id=2195 有若干个人和若干个房子在一个给定网格中,每人走一个都要一定花费,每个房子只能容纳一人,现要求让所有人进入房子,且总花费最小. 构造一 ...
- poj 2135 Farm Tour 最小费最大流
inf开太小错了好久--下次还是要用0x7fffffff #include<stdio.h> #include<string.h> #include<vector> ...
- poj 2195 二分图带权匹配+最小费用最大流
题意:有一个矩阵,某些格有人,某些格有房子,每个人可以上下左右移动,问给每个人进一个房子,所有人需要走的距离之和最小是多少. 貌似以前见过很多这样类似的题,都不会,现在知道是用KM算法做了 KM算法目 ...
- POJ 2195 Going Home / HDU 1533(最小费用最大流模板)
题目大意: 有一个最大是100 * 100 的网格图,上面有 s 个 房子和人,人每移动一个格子花费1的代价,求最小代价让所有的人都进入一个房子.每个房子只能进入一个人. 算法讨论: 注意是KM 和 ...
- 【POJ 2195】 Going Home(KM算法求最小权匹配)
[POJ 2195] Going Home(KM算法求最小权匹配) Going Home Time Limit: 1000MS Memory Limit: 65536K Total Submiss ...
- POJ 2195 Going Home (带权二分图匹配)
POJ 2195 Going Home (带权二分图匹配) Description On a grid map there are n little men and n houses. In each ...
- POJ2195 Going Home (最小费最大流||二分图最大权匹配) 2017-02-12 12:14 131人阅读 评论(0) 收藏
Going Home Description On a grid map there are n little men and n houses. In each unit time, every l ...
随机推荐
- JTAG/SPI/ISP/ICSP 接口电路
- 国产Linux滋生腐败
回想过去,2002年12月11日至12日,信息产业部与科技部联合主办"Linux软件与应用猜測研讨会".影响中国IT业的重要人士,包含政府决策者.学界权威.主要Linux推动厂商等 ...
- 使用jquery加载部分视图01-使用$.get()
使用Html.RenderParital或Html.RenderAction可以在主视图中加载部分视图. 两种方法是有区别的,在"RenderPartial和RenderAction区别&q ...
- ie不支持max-height的解决之法
.div{ max-height: 100px; _height:expression(this.scrollHeight > 100 ? "100px" : "a ...
- linux下限制ip访问
inux下最直接限制ip访问的方式有两种: 1.使用hosts.allow和hosts.deny来设置ip白名单和黑名单,/etc/目录下. 优先级为先检查hosts.deny,再检查hosts.al ...
- visio 画类图时 方法里如何加参数
鼠标双击类(打开属性对话框)-->(类别)操作-->属性-->(类别)参数-->(添加参数)
- Java遍历Map键、值。获取Map大小的方法
Map读取键值对,Java遍历Map的两种实现方法 第一种方法是根据map的keyset()方法来获取key的set集合,然后遍历map取得value的值 import java.util.HashM ...
- Android 面试题集 包含答案
作者:guoxiaoxing 链接: https://github.com/guoxiaoxing/android-interview 本文基于作者采用的MIT协议分发. 手画一下Android系统架 ...
- 深入理解多线程(一)——Synchronized的实现原理
synchronized,是Java中用于解决并发情况下数据同步访问的一个很重要的关键字.当我们想要保证一个共享资源在同一时间只会被一个线程访问到时,我们可以在代码中使用synchronized关键字 ...
- 显示Mysql中的所有用户
在mysql中如何显示所有用户? 1.show databases显示所有数据库 2.show tables显示所有数据表 3.select current_user();显示当前用户 4.显示所有用 ...