poj 2195 Going Home

Description

On a grid map there are n little men and n houses. In each unit time, every little man can move one unit step, either horizontally, or vertically, to an adjacent point. For each little man, you need to pay a $1 travel fee for every step he moves, until he enters a house. The task is complicated with the restriction that each house can accommodate only one little man.

Your task is to compute the minimum amount of money you need to pay in order to send these n little men into those n different houses. The input is a map of the scenario, a ‘.’ means an empty space, an ‘H’ represents a house on that point, and am ‘m’ indicates there is a little man on that point.

You can think of each point on the grid map as a quite large square, so it can hold n little men at the same time; also, it is okay if a little man steps on a grid with a house without entering that house.

Input

There are one or more test cases in the input. Each case starts with a line giving two integers N and M, where N is the number of rows of the map, and M is the number of columns. The rest of the input will be N lines describing the map. You may assume both N and M are between 2 and 100, inclusive. There will be the same number of ‘H’s and ‘m’s on the map; and there will be at most 100 houses. Input will terminate with 0 0 for N and M.

Output

For each test case, output one line with the single integer, which is the minimum amount, in dollars, you need to pay.

Sample Input

2 2

.m

H.

5 5

HH..m

…..

…..

…..

mm..H

7 8

…H….

…H….

…H….

mmmHmmmm

…H….

…H….

…H….

0 0

Sample Output

2

10

28

题目大意:给你一个N × M的含有“H”, “m”。 “.”的二维图。“H”代表HOME。 “m”代表man,“.”代表空。man到HOME的距离为两点坐标的X坐标之差的绝对值加上Y坐标之差的绝对值。man的数量与HOME的数量同样。

如今。问,要是全部的man都回到HOME走的最短的路程总和为多少。

解题思路:还是建图的问题。依据这张二位的图,建一张流图。设置一个超级源点,连向全部的man,容量为1。设置一个超级汇点。使全部的HOME都连向超级汇点,容量为1。

把全部的HOME都拆成两个点。连接的容量为1。每一个房子仅仅能住一个人。

每一个man连向全部的房子,容量为1。费用为二维图上,man点到HOME点的距离。图建完以后。求最小费最大流。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <queue>
using namespace std; const int N = 505;
const int NN = 105;
const int MM = 15005;
const int INF = 0x3f3f3f3f;
const int OF = 100;
const int FIN = 500;
typedef long long ll; int n, m, cntH, cntM, s, t;
struct Node{
int x, y;
}H[NN], M[NN];
char gra[NN][NN];
int pre[N], inq[N];
ll a[N], d[N];
struct Edge{
int from, to;
ll cap, flow;
ll cos;
}; vector<Edge> edges;
vector<int> G[MM]; void init() {
for (int i = 0; i < MM; i++) G[i].clear();
edges.clear();
} void addEdge(int from, int to, ll cap, ll flow, ll cos) {
edges.push_back((Edge){from, to, cap, 0, cos});
edges.push_back((Edge){to, from, 0, 0, -cos});
int m = edges.size();
G[from].push_back(m - 2);
G[to].push_back(m - 1);
} int getDis(int x, int y) {
return abs(M[x].x - H[y].x) + abs(M[x].y - H[y].y);
} void input() {
cntH = cntM = 0;
for (int i = 0; i < n; i++) scanf("%s", gra[i]);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (gra[i][j] == 'H') {
H[cntH].x = i;
H[cntH++].y = j;
} else if (gra[i][j] == 'm') {
M[cntM].x = i;
M[cntM++].y = j;
}
}
}
for (int i = 1; i <= cntH; i++) {
addEdge(i, i + OF, 1, 0, 0);
}
for (int i = 1; i <= cntM; i++) {
for (int j = 1; j <= cntH; j++) {
addEdge(i + 2 * OF, j, 1, 0, getDis(i - 1, j - 1));
}
}
for (int i = 1; i <= cntM; i++) {
addEdge(0, i + 2 * OF, 1, 0, 0);
}
for (int i = 1; i <= cntH; i++) {
addEdge(i + OF, t, 1, 0, 0);
}
} int BF(int s, int t, ll& flow, ll& cost) {
queue<int> Q;
memset(inq, 0, sizeof(inq));
memset(a, 0, sizeof(a));
memset(pre, 0, sizeof(pre));
for (int i = 0; i < N; i++) d[i] = INF;
d[s] = 0;
a[s] = INF;
inq[s] = 1;
int flag = 1;
pre[s] = 0;
Q.push(s);
while (!Q.empty()) {
int u = Q.front(); Q.pop();
inq[u] = 0;
for (int i = 0; i < G[u].size(); i++) {
Edge &e = edges[G[u][i]];
if (e.cap > e.flow && d[e.to] > d[u] + e.cos) {
d[e.to] = d[u] + e.cos;
a[e.to] = min(a[u], e.cap - e.flow);
pre[e.to] = G[u][i];
if (!inq[e.to]) {
inq[e.to] = 1;
Q.push(e.to);
}
}
}
flag = 0;
}
if (d[t] == INF) return 0;
flow += a[t];
cost += (ll)d[t] * (ll)a[t];
for (int u = t; u != s; u = edges[pre[u]].from) {
edges[pre[u]].flow += a[t];
edges[pre[u]^1].flow -= a[t];
}
return 1;
} int MCMF(int s, int t, ll& cost) {
ll flow = 0;
cost = 0;
while (BF(s, t, flow, cost));
return flow;
} int main() {
while (scanf("%d %d\n", &n, &m) == 2, n, m) {
s = 0, t = FIN;
init();
input();
ll cost;
MCMF(s, t, cost);
printf("%lld\n", cost);
}
return 0;
}

poj 2195 Going Home(最小费最大流)的更多相关文章

  1. POJ 2195 Going Home 最小费用最大流 尼玛,心累

    D - Going Home Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Subm ...

  2. POJ 2195 - Going Home - [最小费用最大流][MCMF模板]

    题目链接:http://poj.org/problem?id=2195 Time Limit: 1000MS Memory Limit: 65536K Description On a grid ma ...

  3. poj 2195 Going Home(最小费用最大流)

    题目:http://poj.org/problem?id=2195 有若干个人和若干个房子在一个给定网格中,每人走一个都要一定花费,每个房子只能容纳一人,现要求让所有人进入房子,且总花费最小. 构造一 ...

  4. poj 2135 Farm Tour 最小费最大流

    inf开太小错了好久--下次还是要用0x7fffffff #include<stdio.h> #include<string.h> #include<vector> ...

  5. poj 2195 二分图带权匹配+最小费用最大流

    题意:有一个矩阵,某些格有人,某些格有房子,每个人可以上下左右移动,问给每个人进一个房子,所有人需要走的距离之和最小是多少. 貌似以前见过很多这样类似的题,都不会,现在知道是用KM算法做了 KM算法目 ...

  6. POJ 2195 Going Home / HDU 1533(最小费用最大流模板)

    题目大意: 有一个最大是100 * 100 的网格图,上面有 s 个 房子和人,人每移动一个格子花费1的代价,求最小代价让所有的人都进入一个房子.每个房子只能进入一个人. 算法讨论: 注意是KM 和 ...

  7. 【POJ 2195】 Going Home(KM算法求最小权匹配)

    [POJ 2195] Going Home(KM算法求最小权匹配) Going Home Time Limit: 1000MS   Memory Limit: 65536K Total Submiss ...

  8. POJ 2195 Going Home (带权二分图匹配)

    POJ 2195 Going Home (带权二分图匹配) Description On a grid map there are n little men and n houses. In each ...

  9. POJ2195 Going Home (最小费最大流||二分图最大权匹配) 2017-02-12 12:14 131人阅读 评论(0) 收藏

    Going Home Description On a grid map there are n little men and n houses. In each unit time, every l ...

随机推荐

  1. Using PWM Output as a Digital-to-Analog Converter

    http://www.ti.com/lit/an/spraa88a/spraa88a.pdf http://www.ti.com/litv/zip/spraa88a The high-resoluti ...

  2. Google Admob广告Android全攻略1

    一.登录Google AdMob中文官网:http://www.google.cn/ads/admob/   ,注册帐号. 1.点击注册AdMob帐号 2.进入Google帐号注册页面,因为要创建一个 ...

  3. UML九种图 之 用例图和类图

    前言     近期写UML文档,看视频的时候感觉掌握的还能够,当真正写文档的时候才发现不是一件easy的事.写文档自己又翻开自己的笔记看了一遍又一遍. 以下就给大家介绍一下我画的几张图: 用例图   ...

  4. Hadoop-2.2.0中文文档——Common-Hadoop HTTP web控制台认证

    简单介绍 此文档描写叙述了怎样配置Hadoop HTTP web控制台,去要求用户认证. 默认地,Hadoop HTTP web控制台(JobTracker, NameNode, TaskTracke ...

  5. spring boot注解 --@spring-boot-devtools 自动加载修改的文件和类

    spriing boot中有一个注解,是自动加载修改后的类或者文件. 使用方法为: spring-boot-devtools=true 需要引入devtools包依赖: <dependency& ...

  6. dom4j怎么获得指定名称的节点信息

    <?xml version="1.0" encoding="utf-8" ?> <MgUtil> <db_config> & ...

  7. Android平台上优秀的开源项目

    软件名:gaeproxy 软件作用:Android手机配置GoAgent. 项目地址:https://github.com/madeye/gaeproxy.git 软件名:ProxyDroid 软件作 ...

  8. c++模板类成员的声明和定义

    c++模板类成员的声明和定义应该都放在*.h中,有普通类不一样. 如果定义放在*.cpp中,最终链接时,会报方法undefined错误. 参考:http://users.cis.fiu.edu/~we ...

  9. 一款DIY移动电源的性能

    文波很大 就这款产品,质量非常一般后面拿品胜的做个对比

  10. [15] 星星(Star)图形的生成算法

    顶点数据的生成 bool YfBuildStarVertices ( Yreal radius, Yreal assistRadius, Yreal height, Yuint slices, YeO ...