poj 2195 Going Home(最小费最大流)
poj 2195 Going Home
Description
On a grid map there are n little men and n houses. In each unit time, every little man can move one unit step, either horizontally, or vertically, to an adjacent point. For each little man, you need to pay a $1 travel fee for every step he moves, until he enters a house. The task is complicated with the restriction that each house can accommodate only one little man.
Your task is to compute the minimum amount of money you need to pay in order to send these n little men into those n different houses. The input is a map of the scenario, a ‘.’ means an empty space, an ‘H’ represents a house on that point, and am ‘m’ indicates there is a little man on that point.
You can think of each point on the grid map as a quite large square, so it can hold n little men at the same time; also, it is okay if a little man steps on a grid with a house without entering that house.
Input
There are one or more test cases in the input. Each case starts with a line giving two integers N and M, where N is the number of rows of the map, and M is the number of columns. The rest of the input will be N lines describing the map. You may assume both N and M are between 2 and 100, inclusive. There will be the same number of ‘H’s and ‘m’s on the map; and there will be at most 100 houses. Input will terminate with 0 0 for N and M.
Output
For each test case, output one line with the single integer, which is the minimum amount, in dollars, you need to pay.
Sample Input
2 2
.m
H.
5 5
HH..m
…..
…..
…..
mm..H
7 8
…H….
…H….
…H….
mmmHmmmm
…H….
…H….
…H….
0 0
Sample Output
2
10
28
题目大意:给你一个N × M的含有“H”, “m”。 “.”的二维图。“H”代表HOME。 “m”代表man,“.”代表空。man到HOME的距离为两点坐标的X坐标之差的绝对值加上Y坐标之差的绝对值。man的数量与HOME的数量同样。
如今。问,要是全部的man都回到HOME走的最短的路程总和为多少。
解题思路:还是建图的问题。依据这张二位的图,建一张流图。设置一个超级源点,连向全部的man,容量为1。设置一个超级汇点。使全部的HOME都连向超级汇点,容量为1。
把全部的HOME都拆成两个点。连接的容量为1。每一个房子仅仅能住一个人。
每一个man连向全部的房子,容量为1。费用为二维图上,man点到HOME点的距离。图建完以后。求最小费最大流。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <queue>
using namespace std;
const int N = 505;
const int NN = 105;
const int MM = 15005;
const int INF = 0x3f3f3f3f;
const int OF = 100;
const int FIN = 500;
typedef long long ll;
int n, m, cntH, cntM, s, t;
struct Node{
int x, y;
}H[NN], M[NN];
char gra[NN][NN];
int pre[N], inq[N];
ll a[N], d[N];
struct Edge{
int from, to;
ll cap, flow;
ll cos;
};
vector<Edge> edges;
vector<int> G[MM];
void init() {
for (int i = 0; i < MM; i++) G[i].clear();
edges.clear();
}
void addEdge(int from, int to, ll cap, ll flow, ll cos) {
edges.push_back((Edge){from, to, cap, 0, cos});
edges.push_back((Edge){to, from, 0, 0, -cos});
int m = edges.size();
G[from].push_back(m - 2);
G[to].push_back(m - 1);
}
int getDis(int x, int y) {
return abs(M[x].x - H[y].x) + abs(M[x].y - H[y].y);
}
void input() {
cntH = cntM = 0;
for (int i = 0; i < n; i++) scanf("%s", gra[i]);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (gra[i][j] == 'H') {
H[cntH].x = i;
H[cntH++].y = j;
} else if (gra[i][j] == 'm') {
M[cntM].x = i;
M[cntM++].y = j;
}
}
}
for (int i = 1; i <= cntH; i++) {
addEdge(i, i + OF, 1, 0, 0);
}
for (int i = 1; i <= cntM; i++) {
for (int j = 1; j <= cntH; j++) {
addEdge(i + 2 * OF, j, 1, 0, getDis(i - 1, j - 1));
}
}
for (int i = 1; i <= cntM; i++) {
addEdge(0, i + 2 * OF, 1, 0, 0);
}
for (int i = 1; i <= cntH; i++) {
addEdge(i + OF, t, 1, 0, 0);
}
}
int BF(int s, int t, ll& flow, ll& cost) {
queue<int> Q;
memset(inq, 0, sizeof(inq));
memset(a, 0, sizeof(a));
memset(pre, 0, sizeof(pre));
for (int i = 0; i < N; i++) d[i] = INF;
d[s] = 0;
a[s] = INF;
inq[s] = 1;
int flag = 1;
pre[s] = 0;
Q.push(s);
while (!Q.empty()) {
int u = Q.front(); Q.pop();
inq[u] = 0;
for (int i = 0; i < G[u].size(); i++) {
Edge &e = edges[G[u][i]];
if (e.cap > e.flow && d[e.to] > d[u] + e.cos) {
d[e.to] = d[u] + e.cos;
a[e.to] = min(a[u], e.cap - e.flow);
pre[e.to] = G[u][i];
if (!inq[e.to]) {
inq[e.to] = 1;
Q.push(e.to);
}
}
}
flag = 0;
}
if (d[t] == INF) return 0;
flow += a[t];
cost += (ll)d[t] * (ll)a[t];
for (int u = t; u != s; u = edges[pre[u]].from) {
edges[pre[u]].flow += a[t];
edges[pre[u]^1].flow -= a[t];
}
return 1;
}
int MCMF(int s, int t, ll& cost) {
ll flow = 0;
cost = 0;
while (BF(s, t, flow, cost));
return flow;
}
int main() {
while (scanf("%d %d\n", &n, &m) == 2, n, m) {
s = 0, t = FIN;
init();
input();
ll cost;
MCMF(s, t, cost);
printf("%lld\n", cost);
}
return 0;
}
poj 2195 Going Home(最小费最大流)的更多相关文章
- POJ 2195 Going Home 最小费用最大流 尼玛,心累
D - Going Home Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Subm ...
- POJ 2195 - Going Home - [最小费用最大流][MCMF模板]
题目链接:http://poj.org/problem?id=2195 Time Limit: 1000MS Memory Limit: 65536K Description On a grid ma ...
- poj 2195 Going Home(最小费用最大流)
题目:http://poj.org/problem?id=2195 有若干个人和若干个房子在一个给定网格中,每人走一个都要一定花费,每个房子只能容纳一人,现要求让所有人进入房子,且总花费最小. 构造一 ...
- poj 2135 Farm Tour 最小费最大流
inf开太小错了好久--下次还是要用0x7fffffff #include<stdio.h> #include<string.h> #include<vector> ...
- poj 2195 二分图带权匹配+最小费用最大流
题意:有一个矩阵,某些格有人,某些格有房子,每个人可以上下左右移动,问给每个人进一个房子,所有人需要走的距离之和最小是多少. 貌似以前见过很多这样类似的题,都不会,现在知道是用KM算法做了 KM算法目 ...
- POJ 2195 Going Home / HDU 1533(最小费用最大流模板)
题目大意: 有一个最大是100 * 100 的网格图,上面有 s 个 房子和人,人每移动一个格子花费1的代价,求最小代价让所有的人都进入一个房子.每个房子只能进入一个人. 算法讨论: 注意是KM 和 ...
- 【POJ 2195】 Going Home(KM算法求最小权匹配)
[POJ 2195] Going Home(KM算法求最小权匹配) Going Home Time Limit: 1000MS Memory Limit: 65536K Total Submiss ...
- POJ 2195 Going Home (带权二分图匹配)
POJ 2195 Going Home (带权二分图匹配) Description On a grid map there are n little men and n houses. In each ...
- POJ2195 Going Home (最小费最大流||二分图最大权匹配) 2017-02-12 12:14 131人阅读 评论(0) 收藏
Going Home Description On a grid map there are n little men and n houses. In each unit time, every l ...
随机推荐
- SCSI Pass-Through Interface Tool
http://code.msdn.microsoft.com/SCSI-Pass-Through-a906ceef/sourcecode?fileId=59048&pathId=1919073 ...
- 探秘C#中的yield关键字
在"C#中,什么时候用yield return"中,我们了解到:使用yield return返回集合,不是一次性加载到内存中,而是客户端每调用一次就返回一个集合元素,是一种&quo ...
- MVC中使用AngularJS-01,基本
Angularjs是一个前端的Javascript MVC 库和框架,使前端得到更好的设计.维护和测试.它的核心特性有:MVC.双向数据绑定.指令和语义化标签.模块化工具.依赖注入.HTML模板,以及 ...
- 转 iOS开发debug跟release版本log屏蔽方法
简单介绍以下几个宏: ) __VA_ARGS__ 是一个可变参数的宏,这个可变参数的宏是新的C99规范中新增的,目前似乎只有gcc支持(VC6.0的编译器不支持).宏前面加上##的作用在于,当可变参数 ...
- Android调用手机中的应用市场,去评分的功能实现
在我们常常使用的软件当中,我们经常可以看到在软件的设置界面,有一个功能那就是去评分的功能,只要我们一点击“去评分”就会调用手机中的应用市场软件.一开始我以为这个功能的实现是要遍历整个手机中的软件包名, ...
- 张明楷:案件事实认定方法的七点注意 z
作者|张明楷 来源|<法学杂志> 大体而言,定罪是一个三段论的推理过程.刑法规范是大前提,案件事实是小前提,如果二者相符合,便可以作出相应的判决.具体地说,法官必须把应当判决的.具体的个案 ...
- CentOS 6.5安装配置Nginx
Ubuntu下安装nginx,直接apt-get install nginx就行了,很方便. 但是今天装了CentOS6.5,直接yum install nginx不行,要先处理下源,下面是安装完整流 ...
- RESTful学习文档
视频讲解 http://www.tudou.com/programs/view/PaVOGeK_BOY/ 文档说明 http://www.csdn.net/article/2013-06-13/281 ...
- 服务信息块协议 SMB(Server Message Block protocol)
SMB(Server Message Block)是协议名,它能被用于Web连接和客户端与服务器之间的信息沟通. SMB协议 SMB最初是IBM的贝瑞·费根鲍姆(Barry Feigenbaum)研制 ...
- 语义后承(semantic consequence),句法后承(syntactic consequence),实质蕴含(material implication / material conditional)
作者:罗心澄链接:https://www.zhihu.com/question/21191299/answer/17469774来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明 ...