P5030 长脖子鹿放置
题目背景
众周所知,在西洋棋中,我们有城堡、骑士、皇后、主教和长脖子鹿。
题目描述
如图所示,西洋棋的“长脖子鹿”,类似于中国象棋的马,但按照“目”字攻击,且没有中国象棋“别马腿”的规则。(因为长脖子鹿没有马腿)

给定一个N * M,的棋盘,有一些格子禁止放棋子。问棋盘上最多能放多少个不能互相攻击的长脖子鹿。
输入输出格式
输入格式:
输入的第一行为两个正整数N,M,K。其中K表示禁止放置长脖子鹿的格子数。
第22~第K+1行每一行为两个整数 Xi, Yi表示禁止放置的格子。
输出格式:
一行一个正整数,表示最多能放置的长脖子鹿个数。
代码
二分图的最大独立集,我们考虑如何进行黑白染色。
如果我们按点来进行二分图建立的话,那么发现黑点都连黑点,白点都连白点。所以这样做一定是错的。
那么我们按行来进行黑白染色的话,这样就好了。
#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
using namespace std;
const int maxn=300+5,maxm=800000+100;
int head[maxn*maxn],dis[maxn*maxn];
int cur[maxn*maxn];
bool mark[maxn][maxn];
int n,m,k;
int s,t;
struct egde
{
int to,next,cap;
}e[maxm];
int size=1;
int dx[]={1,1,-1,-1,3,3,-3,-3},dy[]={3,-3,3,-3,1,-1,1,-1};
void addedge(int u,int v,int val)
{
e[++size].to=v;e[size].cap=val;e[size].next=head[u];head[u]=size;
e[++size].to=u;e[size].cap=0;e[size].next=head[v];head[v]=size;
}
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch<='9'&&ch>='0'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*f;
}
bool bfs()
{
memset(dis,0,sizeof(dis));
deque<int>q;
q.push_back(s);
dis[s]=1;
while(!q.empty())
{
int u=q.front();
q.pop_front();
for(int i=head[u];i;i=e[i].next)
{
int to=e[i].to;
if(!dis[to]&&e[i].cap>0)
{
dis[to]=dis[u]+1;
if(q.empty()||dis[to]>dis[q.front()])q.push_back(to);
else q.push_front(to);
}
}
}
return dis[t];
}
int dinic(int u,int f)
{
if(u==t)return f;
for(int &i=cur[u];i;i=e[i].next)
{
int to=e[i].to;
if(dis[to]==dis[u]+1&&e[i].cap>0)
{
int d=dinic(to,min(f,e[i].cap));
if(d>0)
{
e[i].cap-=d;
e[i^1].cap+=d;
return d;
}
}
}
return 0;
}
int maxflow()
{
int flow=0;
while(bfs())
{
memcpy(cur,head,sizeof(head));
while(1)
{
int f=dinic(s,inf);
if(f==0)break;
flow+=f;
}
}
return flow;
}
int id(int i,int j)
{
return (i-1)*m+j;
}
int main()
{
n=read(),m=read(),k=read();
s=0,t=n*m+1;
for(int i=1;i<=k;i++)
mark[read()][read()]=1;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
if(mark[i][j])continue;
int u=id(i,j);
if(i&1)
{
addedge(s,u,1);
for(int l=0;l<8;l++)
{
int x=i+dx[l],y=j+dy[l];
if(mark[x][y])continue;
if(x<1||x>n||y<1||y>m)continue;
int v=id(x,y);
addedge(u,v,1);
}
}
else addedge(u,t,1);
}
printf("%d",n*m-k-maxflow());
return 0;
}
P5030 长脖子鹿放置的更多相关文章
- P5030 长脖子鹿放置 最小割
$ \color{#0066ff}{ 题目描述 }$ 如图所示,西洋棋的"长脖子鹿",类似于中国象棋的马,但按照"目"字攻击,且没有中国象棋"别马腿& ...
- 洛谷 - P5030 - 长脖子鹿放置 - 二分图最大独立集
https://www.luogu.org/problemnew/show/P5030 写的第一道黑色题,图建对了. 隐约觉得互相攻击要连边,规定从奇数行流向偶数行. 二分图最大独立集=二分图顶点总数 ...
- Luogu P5030 长脖子鹿放置(网络流)
匈牙利T了,Dinic飞了... 按奇偶连 #include <cstdio> #include <iostream> #include <cstring> #in ...
- 长脖子鹿放置【洛谷P5030】二分图最大独立集变形题
题目背景 众周所知,在西洋棋中,我们有城堡.骑士.皇后.主教和长脖子鹿. 题目描述 如图所示,西洋棋的“长脖子鹿”,类似于中国象棋的马,但按照“目”字攻击,且没有中国象棋“别马腿”的规则.(因为长脖子 ...
- 洛谷[LnOI2019]长脖子鹿省选模拟赛 简要题解
传送门 听说比赛的时候T4T4T4标程锅了??? WTF换我时间我要写T3啊 于是在T4T4T4调半天无果的情况下260pts260pts260pts收场真的是tcltcltcl. T1 快速多项式变 ...
- 【洛谷比赛】[LnOI2019]长脖子鹿省选模拟赛 T1 题解
今天是[LnOI2019]长脖子鹿省选模拟赛的时间,小编表示考的不怎么样,改了半天也只会改第一题,那也先呈上题解吧. T1:P5248 [LnOI2019SP]快速多项式变换(FPT) 一看这题就很手 ...
- [luogu#2019/03/10模拟赛][LnOI2019]长脖子鹿省选模拟赛赛后总结
t1-快速多项式变换(FPT) 题解 看到这个\(f(x)=a_0+a_1x+a_2x^2+a_3x^3+ \cdots + a_nx^n\)式子,我们会想到我们学习进制转换中学到的,那么我们就只需要 ...
- 洛谷[LnOI2019]长脖子鹿省选模拟赛t1 -> 快速多项式变换
快速多项式 做法:刚拿到此题有点蒙,一开始真没想出来怎么做,于是试着去自己写几个例子. 自己枚举几种情况之后就基本看出来了,其实本题中 n 就是f(m)在m进制下的位数,每项的系数就是f(m)在m进制 ...
- [LnOI2019]长脖子鹿省选模拟赛 东京夏日相会
这里来一发需要开毒瘤优化,并且几率很小一遍过的模拟退火题解... 友情提醒:如果你很久很久没有过某一个点,您可以加上特判 可以像 P1337 [JSOI2004]平衡点 / 吊打XXX 那道题目一样 ...
随机推荐
- 奇虎360的开源OpenResty Windows版本
https://github.com/LomoX-Offical/nginx-openresty-windows
- hdu4348 To the moon (可持久化线段树)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4348 题目大意:给定含有n个数的序列,有以下四种操作 1.C l r d:表示对区间[l,r]中的数加 ...
- fastjson合并json数组中相同的某个元素
/** * @param array JSON数组 * @param array 需合并后的某个元素名 */ private static JSONArray mgreArray(JSONArray ...
- Android SDK说明(图)
- nodejs通过async/await来操作MySQL
在nodejs中从数据库得到数据后是通过回调函数来操作数据的,如果嵌套多层将非常可怕,代码逻辑和可读性将变得非常差.有时用promise也并不能很好得解决问题,因为如果用了promise后,代码将会有 ...
- 现在的编辑器不能复制粘贴word中的文本
我司需要做一个需求,就是使用富文本编辑器时,不要以上传附件的形式上传图片,而是以复制粘贴的形式上传图片. 在网上找了一下,有一个插件支持这个功能. WordPaster 安装方式如下: 直接使用Wor ...
- JAVA WEB怎么实现大文件上传
javaweb上传文件 上传文件的jsp中的部分 上传文件同样可以使用form表单向后端发请求,也可以使用 ajax向后端发请求 1.通过form表单向后端发送请求 改进后的代码不需要form标签,直 ...
- HTML基础入门学习
上一篇给大家介绍了学习HTML的准备工作,本文开始带大家步入HTML的学习 一.HTML基础 网页的组成: HTML:页面构成 css:页面样式表现 JavaScript:交互行为 HTML简介: H ...
- 20180709-Java循环结构
while(布尔表达式){ //循环内容} public class Test{ public static void main(String args[]){ int x = 10; while(x ...
- GCD 和 NSOperationQueue 的差别
http://stackoverflow.com/questions/10373331/nsoperation-vs-grand-central-dispatch http://www.cocoach ...