上一篇提到了计数排序,它在输入序列元素的取值范围较小时,表现不俗。但是,现实生活中不总是满足这个条件,比如最大整形数据可以达到231-1,这样就存在2个问题:

1)因为m的值很大,不再满足m=O(n),计数排序的时间复杂也就不再是线性的;

2)当m很大时,为计数数组申请的内存空间会很大;

为解决这两个问题,本篇讨论基数排序(Radix sort),基数排列的思想是:

1)将先按照某个基数将输入序列的每个元素划分成若干部分,每个部分对排序结果的影响是有优先级的;

2)先按低优先级排序,再按高优先级排序,依次递推。这里要注意,每个部分进行排序时,必须选用稳定排序算法,例如基数排序。

3)最后的次序就是高优先级高的在前,高优先级相同的,低优先级高的在前。

(一)算法实现

     @Override
protected void sort(int[] toSort) {
// number to sort, n integers
int n = toSort.length;
// b bits each integer
int b = Integer.SIZE;
/*
* Split each integer into b/r digits, and each r bits long. So average
* running time is O(b/r(2^r+n)). It is proved that running time is
* close to least time while choosing r to lgn.
*/
int r = (int) Math.ceil(Math.log(n) / Math.log(2));
// considering the space cost, the maximum of r is 16.
r = Math.min(r, 16); int upperLimit = 1 << r;
int loopCount = b / r;
int j = 0;
int[] resultArray = new int[toSort.length];
int[] countingArray = new int[upperLimit];
while (j < loopCount) {
int rightShift = j * r;
radixSort(toSort, upperLimit, rightShift, resultArray,
countingArray);
Arrays.fill(countingArray, 0);
j++;
}
int mod = b % r;
if (mod != 0) {
upperLimit = 1 << mod;
int rightShift = r * loopCount;
countingArray = new int[upperLimit];
radixSort(toSort, upperLimit, rightShift, resultArray,
countingArray);
}
} private void radixSort(int[] toSort, int upperLimit, int rightShift,
int[] resultArray, int[] countingArray) {
int allOnes = upperLimit - 1;
for (int i = 0; i < toSort.length; i++) {
int radix = (toSort[i] >> rightShift) & allOnes;
countingArray[radix]++;
}
for (int i = 1; i < countingArray.length; i++) {
countingArray[i] += countingArray[i - 1];
} for (int i = toSort.length - 1; i >= 0; i--) {
int radix = (toSort[i] >> rightShift) & allOnes;
resultArray[countingArray[radix] - 1] = toSort[i];
countingArray[radix]--;
}
System.arraycopy(resultArray, 0, toSort, 0, resultArray.length);
}

radixSort

1)算法属于分配排序

2)平均时间复杂度是O(b/r(2r+n)), b-每个元素的bit数,r-每个元素划分成b/r个数字,每个数字r个bit。当r=log2n时,复杂度是O(2bn/log2n),也就是说,当b=O(log2n)时,时间复杂度是O(n).

3) 空间复杂度是O(2r+n)

4)算法属于稳定排序

(二)算法仿真

下面对随机化快速排序和基数排序,针对不同输入整数序列长度,仿真结果如下,从结果看,当输入序列长度越大,基数排序性能越优越。

**************************************************
Number to Sort is:2500
Array to sort is:{1642670374,460719485,1773719101,2140462092,1260791250,199719453,1290828881,1946941575,2032337910,643536338...}
Cost time of 【RadixSort】 is(milliseconds):48
Sort result of 【RadixSort】:{217942,491656,1389218,2642908,3608001,3976751,4905471,5094692,6340348,7693772...}
Cost time of 【RandomizedQuickSort】 is(milliseconds):1
Sort result of 【RandomizedQuickSort】:{217942,491656,1389218,2642908,3608001,3976751,4905471,5094692,6340348,7693772...}
**************************************************
Number to Sort is:25000
Array to sort is:{987947608,1181521142,1240568028,373349221,289183678,2051121943,1257313984,745646081,1414556623,1859315040...}
Cost time of 【RadixSort】 is(milliseconds):1
Sort result of 【RadixSort】:{47434,109303,240122,255093,448360,526046,526445,628228,837987,966240...}
Cost time of 【RandomizedQuickSort】 is(milliseconds):2
Sort result of 【RandomizedQuickSort】:{47434,109303,240122,255093,448360,526046,526445,628228,837987,966240...}
**************************************************
Number to Sort is:250000
Array to sort is:{1106960922,1965236858,1114033657,1196235697,2083563075,1994568819,1185250879,670222217,1386040268,1316674615...}
Cost time of 【RadixSort】 is(milliseconds):7
Sort result of 【RadixSort】:{466,884,8722,35382,37181,44708,53396,55770,67518,74898...}
Cost time of 【RandomizedQuickSort】 is(milliseconds):27
Sort result of 【RandomizedQuickSort】:{466,884,8722,35382,37181,44708,53396,55770,67518,74898...}
**************************************************
Number to Sort is:2500000
Array to sort is:{1903738012,485657780,1747057138,2082998554,1658643001,91586227,2127717572,557705232,533021562,1322007386...}
Cost time of 【RadixSort】 is(milliseconds):81
Sort result of 【RadixSort】:{369,392,1316,1378,2301,3819,4013,4459,5922,6423...}
Cost time of 【RandomizedQuickSort】 is(milliseconds):340
Sort result of 【RandomizedQuickSort】:{369,392,1316,1378,2301,3819,4013,4459,5922,6423...}
**************************************************
Number to Sort is:25000000
Array to sort is:{2145921976,298753549,11187940,410746614,503122524,1951513957,1760836125,2141838979,1702951573,1402856280...}
Cost time of 【RadixSort】 is(milliseconds):1,022
Sort result of 【RadixSort】:{130,145,406,601,683,688,736,865,869,954...}
Cost time of 【RandomizedQuickSort】 is(milliseconds):3,667
Sort result of 【RandomizedQuickSort】:{130,145,406,601,683,688,736,865,869,954...}

相关源码:

 package com.cnblogs.riyueshiwang.sort;

 import java.util.Arrays;

 public class RadixSort extends abstractSort {

     @Override
protected void sort(int[] toSort) {
// number to sort, n integers
int n = toSort.length;
// b bits each integer
int b = Integer.SIZE;
/*
* Split each integer into b/r digits, and each r bits long. So average
* running time is O(b/r(2^r+n)). It is proved that running time is
* close to least time while choosing r to lgn.
*/
int r = (int) Math.ceil(Math.log(n) / Math.log(2));
// considering the space cost, the maximum of r is 16.
r = Math.min(r, 16); int upperLimit = 1 << r;
int loopCount = b / r;
int j = 0;
int[] resultArray = new int[toSort.length];
int[] countingArray = new int[upperLimit];
while (j < loopCount) {
int rightShift = j * r;
radixSort(toSort, upperLimit, rightShift, resultArray,
countingArray);
Arrays.fill(countingArray, 0);
j++;
}
int mod = b % r;
if (mod != 0) {
upperLimit = 1 << mod;
int rightShift = r * loopCount;
countingArray = new int[upperLimit];
radixSort(toSort, upperLimit, rightShift, resultArray,
countingArray);
}
} private void radixSort(int[] toSort, int upperLimit, int rightShift,
int[] resultArray, int[] countingArray) {
int allOnes = upperLimit - 1;
for (int i = 0; i < toSort.length; i++) {
int radix = (toSort[i] >> rightShift) & allOnes;
countingArray[radix]++;
}
for (int i = 1; i < countingArray.length; i++) {
countingArray[i] += countingArray[i - 1];
} for (int i = toSort.length - 1; i >= 0; i--) {
int radix = (toSort[i] >> rightShift) & allOnes;
resultArray[countingArray[radix] - 1] = toSort[i];
countingArray[radix]--;
}
System.arraycopy(resultArray, 0, toSort, 0, resultArray.length);
} public static void main(String[] args) {
for (int j = 0, n = 2500; j < 5; j++, n = n * 10) {
System.out
.println("**************************************************");
System.out.println("Number to Sort is:" + n);
int upperLimit = Integer.MAX_VALUE;
int[] array = CommonUtils.getRandomIntArray(n, upperLimit);
System.out.print("Array to sort is:");
CommonUtils.printIntArray(array); int[] array1 = Arrays.copyOf(array, n);
new RadixSort().sortAndprint(array1); int[] array2 = Arrays.copyOf(array, n);
new RandomizedQuickSort().sortAndprint(array2);
}
}
}

RadixSort.java

排序算法七:基数排序(Radix sort)的更多相关文章

  1. 经典排序算法 - 基数排序Radix sort

    经典排序算法 - 基数排序Radix sort 原理类似桶排序,这里总是须要10个桶,多次使用 首先以个位数的值进行装桶,即个位数为1则放入1号桶,为9则放入9号桶,临时忽视十位数 比如 待排序数组[ ...

  2. java排序算法之冒泡排序(Bubble Sort)

    java排序算法之冒泡排序(Bubble Sort) 原理:比较两个相邻的元素,将值大的元素交换至右端. 思路:依次比较相邻的两个数,将小数放在前面,大数放在后面.即在第一趟:首先比较第1个和第2个数 ...

  3. 桶排序/基数排序(Radix Sort)

    说基数排序之前,我们先说桶排序: 基本思想:是将阵列分到有限数量的桶子里.每个桶子再个别排序(有可能再使用别的排序算法或是以递回方式继续使用桶排序进行排序).桶排序是鸽巢排序的一种归纳结果.当要被排序 ...

  4. 基础排序算法之快速排序(Quick Sort)

    快速排序(Quick Sort)同样是使用了分治法的思想,相比于其他的排序方法,它所用到的空间更少,因为其可以实现原地排序.同时如果随机选取中心枢(pivot),它也是一个随机算法.最重要的是,快速排 ...

  5. js 实现排序算法 -- 冒泡排序(Bubble Sort)

    原文: 十大经典排序算法(动图演示) 冒泡排序(Bubble Sort) 冒泡排序是一种简单的排序算法.它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来.走访数列的工作 ...

  6. 基数排序(radix sort)

    #include<iostream> #include<ctime> #include <stdio.h> #include<cstring> #inc ...

  7. js 实现排序算法 -- 快速排序(Quick Sort)

    原文: 十大经典排序算法(动图演示) 快速排序 快速排序的基本思想:通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整 ...

  8. js 实现排序算法 -- 归并排序(Merge Sort)

    原文: 十大经典排序算法(动图演示) 归并排序 归并排序是建立在归并操作上的一种有效的排序算法.该算法是采用分治法(Divide and Conquer)的一个非常典型的应用.将已有序的子序列合并,得 ...

  9. js 实现排序算法 -- 插入排序(Insertion Sort)

    原文: 十大经典排序算法(动图演示) 插入排序 插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法.它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描, ...

随机推荐

  1. FPGA引脚锁定 注意err和高阻状态

    1.fpga没有用的的管脚一定要设置成高阻状态设置路径如下: Assignmen->Device->Device&Pin Option->Unused pins->As ...

  2. tp5 微信授权

    protected $appid = '****************'; //微信 appidprotected $appsecrt = '******************'; //微信 ap ...

  3. 基于tcp和udp协议的套接字

    socket:是在应用层和传输层之间的一个抽象层,它把TCP/IP层的复杂的操作封装抽象,并提供一些接口供应用层调用 套接字:被设计用于同一台主机上多个应用程序之间的通信,被称为进程之间通信或IPC ...

  4. MySQL安装+更换yum源+mysql密码忘记(2019更新)

    安装mysql步骤:1.yum install mysql-server -y2.service mysqld start3.mysql4.切换数据库 use mysql 查看表 show table ...

  5. 深度强化学习(Deep Reinforcement Learning)入门:RL base & DQN-DDPG-A3C introduction

    转自https://zhuanlan.zhihu.com/p/25239682 过去的一段时间在深度强化学习领域投入了不少精力,工作中也在应用DRL解决业务问题.子曰:温故而知新,在进一步深入研究和应 ...

  6. 搭建DHCP服务实现动态分配IP地址-NTP网络时间同步

    本节所讲内容: DHCP服务器工作原理 使用DHCP为局域网中的机器分配IP地址 使用DHCP为服务器分配固定IP地址 ntpdate加计划任务同步服务器时间   实验环境: 服务端:xuegod63 ...

  7. noip考前抱佛脚 数论小总结

    exCRT 求解韩信点兵问题,常见的就是合并不同\(mod\). 先mo一发高神的板子 for(R i=2;i<=n;++i){ ll Y1,Yi,lcm=Lcm(p[i],p[1]); exg ...

  8. easyuUI实现客户分页显示逻辑分析

    页面 前端 前端easyUI,自带分页功能,添加pagination属性 前端会传给后端两个属性: page:当前页码 rows:每页显示记录数 后端 接收page和rows参数 根据参数分页查询 获 ...

  9. 【前端】HTML基础

    前端 HTML:一个人 CSS:这个人的衣服 JS:这个人的行为 1 head标签 head相关标签 <!--html5--> <!DOCTYPE html> <html ...

  10. JVM---Java存储模型

    1.概述 1.1.Java语言规范  规定了  JVM要维护  内部线程类似顺序化语意(只要程序的最终结果  等同于  它在严格的顺序化环境中执行的结果): 2.平台的存储模型 2.1.现代的处理器. ...