Spark SQL支持两种RDDs转换为DataFrames的方式
使用反射获取RDD内的Schema
    当已知类的Schema的时候,使用这种基于反射的方法会让代码更加简洁而且效果也很好。
通过编程接口指定Schema
    通过Spark SQL的接口创建RDD的Schema,这种方式会让代码比较冗长。
    这种方法的好处是,在运行时才知道数据的列以及列的类型的情况下,可以动态生成Schema。

原文和作者一起讨论:http://www.cnblogs.com/intsmaze/p/6613755.html

微信:intsmaze

使用反射获取Schema(Inferring the Schema Using Reflection)
import org.apache.spark.sql.{DataFrameReader, SQLContext}
import org.apache.spark.{SparkConf, SparkContext} object InferringSchema {
def main(args: Array[String]) { //创建SparkConf()并设置App名称
val conf = new SparkConf().setAppName("SQL-intsmaze") //SQLContext要依赖SparkContext
val sc = new SparkContext(conf)
//创建SQLContext
val sqlContext = new SQLContext(sc) //从指定的地址创建RDD
val lineRDD = sc.textFile("hdfs://192.168.19.131:9000/person.tzt").map(_.split(",")) //创建case class
//将RDD和case class关联
val personRDD = lineRDD.map(x => Person(x(0).toInt, x(1), x(2).toInt)) //导入隐式转换,如果不导入无法将RDD转换成DataFrame
//将RDD转换成DataFrame
import sqlContext.implicits._
val personDF = personRDD.toDF //注册表
personDF.registerTempTable("intsmaze")
//传入SQL
val df = sqlContext.sql("select * from intsmaze order by age desc limit 2") //将结果以JSON的方式存储到指定位置
df.write.json("hdfs://192.168.19.131:9000/personresult") //停止Spark Context
sc.stop()
}
}
//case class一定要放到外面
case class Person(id: Int, name: String, age: Int)
spark shell中不需要导入sqlContext.implicits._是因为spark shell默认已经自动导入了。
打包提交到yarn集群:
/home/hadoop/app/spark/bin/spark-submit --class InferringSchema \
--master yarn \
--deploy-mode cluster \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores 2 \
--queue default \
/home/hadoop/sparksql-1.0-SNAPSHOT.jar

通过编程接口指定Schema(Programmatically Specifying the Schema)

当JavaBean不能被预先定义的时候,编程创建DataFrame分为三步:

从原来的RDD创建一个Row格式的RDD.

创建与RDD中Rows结构匹配的StructType,通过该StructType创建表示RDD的Schema.

通过SQLContext提供的createDataFrame方法创建DataFrame,方法参数为RDD的Schema.

import org.apache.spark.sql.{Row, SQLContext}
import org.apache.spark.sql.types._
import org.apache.spark.{SparkContext, SparkConf} object SpecifyingSchema {
def main(args: Array[String]) {
//创建SparkConf()并设置App名称
val conf = new SparkConf().setAppName("SQL-intsmaze")
//SQLContext要依赖SparkContext
val sc = new SparkContext(conf)
//创建SQLContext
val sqlContext = new SQLContext(sc) //从指定的地址创建RDD
val personRDD = sc.textFile(args(0)).map(_.split(",")) //通过StructType直接指定每个字段的schema
val schema = StructType(
List(
StructField("id", IntegerType, true),
StructField("name", StringType, true),
StructField("age", IntegerType, true)
)
) //将RDD映射到rowRDD
val rowRDD = personRDD.map(p => Row(p(0).toInt, p(1).trim, p(2).toInt)) //将schema信息应用到rowRDD上
val personDataFrame = sqlContext.createDataFrame(rowRDD, schema) //注册表
personDataFrame.registerTempTable("intsmaze")
//执行SQL
val df = sqlContext.sql("select * from intsmaze order by age desc ")
//将结果以JSON的方式存储到指定位置
df.write.json(args(1))
//停止Spark Context
sc.stop()
}
}
将程序打成jar包,上传到spark集群,提交Spark任务

/home/hadoop/app/spark/bin/spark-submit --class SpecifyingSchema \
--master yarn \
--deploy-mode cluster \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores 2 \
--queue default \
/home/hadoop/sparksql-1.0-SNAPSHOT.jar \
hdfs://192.168.19.131:9000/person.txt hdfs://192.168.19.131:9000/intsmazeresult
/home/hadoop/app/spark/bin/spark-submit --class SpecifyingSchema \
--master yarn \
--deploy-mode client \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores 2 \
--queue default \
/home/hadoop/sparksql-1.0-SNAPSHOT.jar \
hdfs://192.168.19.131:9000/person.txt hdfs://192.168.19.131:9000/intsmazeresult

在maven项目的pom.xml中添加Spark SQL的依赖

<dependency>
  <groupId>org.apache.spark</groupId>
  <artifactId>spark-sql_2.10</artifactId>
  <version>1.6.2</version>
</dependency>

2.sparkSQL--DataFrames与RDDs的相互转换的更多相关文章

  1. DataFrames与RDDs的相互转换

    Spark SQL支持两种RDDs转换为DataFrames的方式 使用反射获取RDD内的Schema     当已知类的Schema的时候,使用这种基于反射的方法会让代码更加简洁而且效果也很好. 通 ...

  2. SparkSQL DataFrames操作

    Hive中已经存在emp和dept表: select * from emp; +--------+---------+------------+-------+-------------+------ ...

  3. SparkSql官方文档中文翻译(java版本)

    1 概述(Overview) 2 DataFrames 2.1 入口:SQLContext(Starting Point: SQLContext) 2.2 创建DataFrames(Creating ...

  4. Spark记录-SparkSql官方文档中文翻译(部分转载)

    1 概述(Overview) Spark SQL是Spark的一个组件,用于结构化数据的计算.Spark SQL提供了一个称为DataFrames的编程抽象,DataFrames可以充当分布式SQL查 ...

  5. Spark SQL 官方文档-中文翻译

    Spark SQL 官方文档-中文翻译 Spark版本:Spark 1.5.2 转载请注明出处:http://www.cnblogs.com/BYRans/ 1 概述(Overview) 2 Data ...

  6. Spark SQL 之 DataFrame

    Spark SQL 之 DataFrame 转载请注明出处:http://www.cnblogs.com/BYRans/ 概述(Overview) Spark SQL是Spark的一个组件,用于结构化 ...

  7. 转】Spark SQL 之 DataFrame

    原博文出自于: http://www.cnblogs.com/BYRans/p/5003029.html 感谢! Spark SQL 之 DataFrame 转载请注明出处:http://www.cn ...

  8. DataFrames,Datasets,与 SparkSQL

    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VM ...

  9. Spark RDDs vs DataFrames vs SparkSQL

    简介 Spark的 RDD.DataFrame 和 SparkSQL的性能比较. 2方面的比较 单条记录的随机查找 aggregation聚合并且sorting后输出 使用以下Spark的三种方式来解 ...

随机推荐

  1. 不是技术牛人,如何拿到国内IT巨头的Offer (转载)

    原文地址:http://blog.csdn.net/lsldd/article/details/13506263 不久前,byvoid面阿里星计划的面试结果截图泄漏,引起无数IT屌丝的羡慕敬仰.看看这 ...

  2. Wpf中鼠标样式的修改,作用点修改

    最近,在做一个控件的鼠标样式,Ps加了插件,可以编辑生成.cur格式的图标. 可是,所有的改完以后,调试运行,结果发现自己制作的图标的作用点总是在左上角,而不是在"手形"图标的食指 ...

  3. html5表单和伪类

    type = "email"; 自带验证格式type = "url"; 网址 http//:type = "tel";移动端会变成数字键盘t ...

  4. 由merge into引起的序列跳号

    最近生产库反应出一个问题,某张表的主键ID并没有按照原计划的期望增加,而是间歇性跳号,每次跳2万多,经过研究发现是某个同步过程的merge into引起的,具体语句如下 merge into t_if ...

  5. 整理 - .Net系统预定义的委托们

    大部分情况下,我们可以使用系统预定义的委托类型,而不需要自己再来手动定义. 以下委托都位于System命名空间下. 传入参数.返回值的类型,大都被声明为泛型. 1.Action系列 有0-16个参数, ...

  6. 过程 : 系统语言和jobPost 语言版本

    在前台,用户选择语言会是checkbox list,可以选择多个.如果英文是主要语言,那么 ·选择英文而已,jobPosts 只显示英文版本 ·如果jobPost有英文和中文,只显示英文 ·如果job ...

  7. HTML中鼠标移动过去变换

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  8. 自定义view(二)

    这里是自定义view(二),上一篇关于自定义view的一些基本知识,比如说自定义view的步骤.会涉及到哪些函数以及如何实现自定义属性,同时实现了一个很基础的自定义控件,一个自定义的计时器,需要看的人 ...

  9. 完全理解Python迭代对象、迭代器、生成器

    在了解Python的数据结构时,容器(container).可迭代对象(iterable).迭代器(iterator).生成器(generator).列表/集合/字典推导式(list,set,dict ...

  10. 开始了大概三四天的Rails学习之路

    最近因为一位极光推送朋友,我开始了大概三四天的Rails学习之路,最终达到的水平是可以比较轻松地做出大部分功能,然后自我感觉可以自如地按照Rails的设计思想去思考.由于编程的日益流行,我结识了越来越 ...