Spark SQL支持两种RDDs转换为DataFrames的方式
使用反射获取RDD内的Schema
    当已知类的Schema的时候,使用这种基于反射的方法会让代码更加简洁而且效果也很好。
通过编程接口指定Schema
    通过Spark SQL的接口创建RDD的Schema,这种方式会让代码比较冗长。
    这种方法的好处是,在运行时才知道数据的列以及列的类型的情况下,可以动态生成Schema。

原文和作者一起讨论:http://www.cnblogs.com/intsmaze/p/6613755.html

微信:intsmaze

使用反射获取Schema(Inferring the Schema Using Reflection)
import org.apache.spark.sql.{DataFrameReader, SQLContext}
import org.apache.spark.{SparkConf, SparkContext} object InferringSchema {
def main(args: Array[String]) { //创建SparkConf()并设置App名称
val conf = new SparkConf().setAppName("SQL-intsmaze") //SQLContext要依赖SparkContext
val sc = new SparkContext(conf)
//创建SQLContext
val sqlContext = new SQLContext(sc) //从指定的地址创建RDD
val lineRDD = sc.textFile("hdfs://192.168.19.131:9000/person.tzt").map(_.split(",")) //创建case class
//将RDD和case class关联
val personRDD = lineRDD.map(x => Person(x(0).toInt, x(1), x(2).toInt)) //导入隐式转换,如果不导入无法将RDD转换成DataFrame
//将RDD转换成DataFrame
import sqlContext.implicits._
val personDF = personRDD.toDF //注册表
personDF.registerTempTable("intsmaze")
//传入SQL
val df = sqlContext.sql("select * from intsmaze order by age desc limit 2") //将结果以JSON的方式存储到指定位置
df.write.json("hdfs://192.168.19.131:9000/personresult") //停止Spark Context
sc.stop()
}
}
//case class一定要放到外面
case class Person(id: Int, name: String, age: Int)
spark shell中不需要导入sqlContext.implicits._是因为spark shell默认已经自动导入了。
打包提交到yarn集群:
/home/hadoop/app/spark/bin/spark-submit --class InferringSchema \
--master yarn \
--deploy-mode cluster \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores 2 \
--queue default \
/home/hadoop/sparksql-1.0-SNAPSHOT.jar

通过编程接口指定Schema(Programmatically Specifying the Schema)

当JavaBean不能被预先定义的时候,编程创建DataFrame分为三步:

从原来的RDD创建一个Row格式的RDD.

创建与RDD中Rows结构匹配的StructType,通过该StructType创建表示RDD的Schema.

通过SQLContext提供的createDataFrame方法创建DataFrame,方法参数为RDD的Schema.

import org.apache.spark.sql.{Row, SQLContext}
import org.apache.spark.sql.types._
import org.apache.spark.{SparkContext, SparkConf} object SpecifyingSchema {
def main(args: Array[String]) {
//创建SparkConf()并设置App名称
val conf = new SparkConf().setAppName("SQL-intsmaze")
//SQLContext要依赖SparkContext
val sc = new SparkContext(conf)
//创建SQLContext
val sqlContext = new SQLContext(sc) //从指定的地址创建RDD
val personRDD = sc.textFile(args(0)).map(_.split(",")) //通过StructType直接指定每个字段的schema
val schema = StructType(
List(
StructField("id", IntegerType, true),
StructField("name", StringType, true),
StructField("age", IntegerType, true)
)
) //将RDD映射到rowRDD
val rowRDD = personRDD.map(p => Row(p(0).toInt, p(1).trim, p(2).toInt)) //将schema信息应用到rowRDD上
val personDataFrame = sqlContext.createDataFrame(rowRDD, schema) //注册表
personDataFrame.registerTempTable("intsmaze")
//执行SQL
val df = sqlContext.sql("select * from intsmaze order by age desc ")
//将结果以JSON的方式存储到指定位置
df.write.json(args(1))
//停止Spark Context
sc.stop()
}
}
将程序打成jar包,上传到spark集群,提交Spark任务

/home/hadoop/app/spark/bin/spark-submit --class SpecifyingSchema \
--master yarn \
--deploy-mode cluster \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores 2 \
--queue default \
/home/hadoop/sparksql-1.0-SNAPSHOT.jar \
hdfs://192.168.19.131:9000/person.txt hdfs://192.168.19.131:9000/intsmazeresult
/home/hadoop/app/spark/bin/spark-submit --class SpecifyingSchema \
--master yarn \
--deploy-mode client \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores 2 \
--queue default \
/home/hadoop/sparksql-1.0-SNAPSHOT.jar \
hdfs://192.168.19.131:9000/person.txt hdfs://192.168.19.131:9000/intsmazeresult

在maven项目的pom.xml中添加Spark SQL的依赖

<dependency>
  <groupId>org.apache.spark</groupId>
  <artifactId>spark-sql_2.10</artifactId>
  <version>1.6.2</version>
</dependency>

2.sparkSQL--DataFrames与RDDs的相互转换的更多相关文章

  1. DataFrames与RDDs的相互转换

    Spark SQL支持两种RDDs转换为DataFrames的方式 使用反射获取RDD内的Schema     当已知类的Schema的时候,使用这种基于反射的方法会让代码更加简洁而且效果也很好. 通 ...

  2. SparkSQL DataFrames操作

    Hive中已经存在emp和dept表: select * from emp; +--------+---------+------------+-------+-------------+------ ...

  3. SparkSql官方文档中文翻译(java版本)

    1 概述(Overview) 2 DataFrames 2.1 入口:SQLContext(Starting Point: SQLContext) 2.2 创建DataFrames(Creating ...

  4. Spark记录-SparkSql官方文档中文翻译(部分转载)

    1 概述(Overview) Spark SQL是Spark的一个组件,用于结构化数据的计算.Spark SQL提供了一个称为DataFrames的编程抽象,DataFrames可以充当分布式SQL查 ...

  5. Spark SQL 官方文档-中文翻译

    Spark SQL 官方文档-中文翻译 Spark版本:Spark 1.5.2 转载请注明出处:http://www.cnblogs.com/BYRans/ 1 概述(Overview) 2 Data ...

  6. Spark SQL 之 DataFrame

    Spark SQL 之 DataFrame 转载请注明出处:http://www.cnblogs.com/BYRans/ 概述(Overview) Spark SQL是Spark的一个组件,用于结构化 ...

  7. 转】Spark SQL 之 DataFrame

    原博文出自于: http://www.cnblogs.com/BYRans/p/5003029.html 感谢! Spark SQL 之 DataFrame 转载请注明出处:http://www.cn ...

  8. DataFrames,Datasets,与 SparkSQL

    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VM ...

  9. Spark RDDs vs DataFrames vs SparkSQL

    简介 Spark的 RDD.DataFrame 和 SparkSQL的性能比较. 2方面的比较 单条记录的随机查找 aggregation聚合并且sorting后输出 使用以下Spark的三种方式来解 ...

随机推荐

  1. gulp源码解析(三)—— 任务管理

    上篇文章我们分别对 gulp 的 .src 和 .dest 两个主要接口做了分析,今天打算把剩下的面纱一起揭开 —— 解析 gulp.task 的源码,了解在 gulp4.0 中是如何管理.处理任务的 ...

  2. 笑谈ArcToolbox (2) 开启ArcToolbox的钥匙

    笑谈ArcToolbox (2) 开启ArcToolbox的钥匙 by 李远祥 GIS人遇到ArcToolbox就像找到了宝藏一样兴奋,但并不是每个找到宝藏的人都具备开启宝藏的钥匙.有时候功能强大并不 ...

  3. 使用SBT编译Spark子项目

    前言 最近为了解决Spark2.1的Bug,对Spark的源码做了不少修改,需要对修改的代码做编译测试,如果编译整个Spark项目快的话,也得半小时左右,所以基本上是改了哪个子项目就单独对那个项目编译 ...

  4. 第一章 Java语言概述

    1.人机交互有两种方法:一种是图形化界面,一种是命令行方式 2.如何打开命令行:开始-在运行命令行中输入cmd 3.常用的DOS命令: dir(directory):列出当前目录下文件及文件夹 md( ...

  5. 遍历hashMap对效率的影响

    测试环境:jdk1.7.0_79\Processor 1.7 GHz Intel Core i5 遍历Map的方式有很多,通常场景下我们需要的是遍历Map中的Key和Value. 写了两个方法: pu ...

  6. 访问内网中的sql server数据库的简便方法

    前言: 有时候我们要访问局域网内的 sql server服务器,比如测试环境数据库在公司内网,回到家或在客户现场要连接内网中的数据库 第一步:假如可以连接局域网的数据库 192.168.150.129 ...

  7. Monkey实例测试

    三.Monkey实例测试 Windows下(注:2-4步是为了查看我们可以测试哪些应用程序包,可省略): 1. 通过eclipse启动一个Android的emulator或者2 2. 在命令行中输入: ...

  8. phpcms v9更改后台文章排序的方法

    后台文章排序怎么才可以按自己输入的数字排列?如按4,3,2,1,从大到小排列?实现方法如下: 修改文件: phpcms\modules\content 中的 content.php 代码如下: $da ...

  9. Two analytical 2d line intersection in OpenCASCADE

    Two analytical 2d line intersection in OpenCASCADE eryar@163.com Abstract. OpenCASCADE geometric too ...

  10. 从Angular2路由引发的前后端路由浅谈

    笔者的学习进度比较慢,直到两年以前写的网站都还是以服务端为主导的,即网站的所有视图都由服务器视图模板来渲染,笔者使用的是 DotNet MVC,开发套路就是在Controller里面写Action,在 ...