Bellman-Ford 求含负权最短路
该算法详解请看 https://www.cnblogs.com/tanky_woo/archive/2011/01/17/1937728.html
单源最短路 当图中存在负权边时 迪杰斯特拉就不能用了 该算法解决了此问题 时间复杂度O(nm)
注意 图中含有负圈时不成立。当判定存在负圈时,这只说明s可以到达一个负圈,并不代表s到每个点的最短路都不存在。
另外,如果图中有其他负圈但是s无法达到这个负圈,该算法也无法找到,解决方法加一个节点(还不会。。。)
该算法可以用 队列 优化 名为spfa
下面给出 有向图 的代码
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <sstream>
#include <algorithm>
#include <string>
#include <queue>
#include <ctime>
#include <vector>
using namespace std;
const int maxn= 1e3+;
const int maxm= 1e3+;
const int inf = 0x3f3f3f3f;
typedef long long ll;
int n,m,s; //n m s 分别表示 点数-标号从1开始 边数-标号从0开始 起点
struct edge
{
int u,v,w; //u为边的起点 v为边的终点 w为边的权值
}edges[maxm];
int d[maxn]; //d[i]表示 i 点到源点 s 的最短距离
int p[maxn]; //p[i]记录最短路到达 i 之前的节点
int Bellman_Ford(int x)
{
for(int i=;i<=n;i++)
d[i]=inf;
d[x]=;
for(int i=;i<n;i++) // n-1次迭代
for(int j=;j<m;j++) // 检查每条边
{
if(d[edges[j].u]+edges[j].w<d[edges[j].v]) // 松弛操作
{
d[edges[j].v]=d[edges[j].u]+edges[j].w;
p[edges[j].v]=edges[j].u; //记录路径
}
}
int flag=;
for(int i=;i<m;i++) //判断是否有负环
if(d[edges[i].u]+edges[i].w<d[edges[i].v])
{
flag=;
break;
}
return flag; //返回最短路是否存在
}
void Print_Path(int x)
{
while(x!=p[x]) //逆序输出 正序的话用栈处理一下就好了
{
printf("%d ",x);
x=p[x];
}
printf("%d\n",x);
}
int main()
{
while(scanf("%d %d %d",&n,&m,&s)!=EOF)
{
for(int i=;i<m;i++)
scanf("%d %d %d",&edges[i].u,&edges[i].v,&edges[i].w);
p[s]=s;
if(Bellman_Ford(s)==)
for(int i=;i<=n;i++)
{
printf("%d %d\n",i,d[i]);
Print_Path(i);
}
else
printf("sorry\n");
return ;
}
}
输入
6 9 1
1 2 2
1 4 -1
1 3 1
3 4 2
4 2 1
3 6 3
4 6 3
6 5 1
2 5 -1
输出
1 0
1
2 0
2 4 1
3 1
3 1
4 -1
4 1
5 -1
5 2 4 1
6 2
6 4 1
太菜了 wa~~
Bellman-Ford 求含负权最短路的更多相关文章
- Spfa 求含负权边的最短路 + 判断是否存在负权回路
在Bellman-Ford算法之后,我们总算迎来了spfa算法,其实就如同堆优化Dijkstra算法之于朴素版Dijkstra算法,spfa算法仅仅是对Bellman-Ford算法的一种优化,但是在形 ...
- POJ 3259 Wormholes 虫洞(负权最短路,负环)
题意: 给一个混合图,求判断是否有负环的存在,若有,输出YES,否则NO.有重边. 思路: 这是spfa的功能范围.一个点入队列超过n次就是有负环了.因为是混合图,所以当你跑一次spfa时发现没有负环 ...
- SPFA 求带负权的单源最短路
int spfa_bfs(int s) { ///s表示起点. queue <int> q; memset(d,0x3f,sizeof(d)); ///d数组中存下的就是最短路径(存在的话 ...
- [板子]SPFA算法+链式前向星实现最短路及负权最短路
参考:https://blog.csdn.net/xunalove/article/details/70045815 有关SPFA的介绍就掠过了吧,不是很赞同一些博主说是国内某人最先提出来,Bellm ...
- poj 3259 bellman最短路推断有无负权回路
Wormholes Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 36717 Accepted: 13438 Descr ...
- poj3259 bellman——ford Wormholes解绝负权问题
Wormholes Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 35103 Accepted: 12805 Descr ...
- uva 558 - Wormholes(Bellman Ford判断负环)
题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...
- Wormholes 最短路判断有无负权值
Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes ...
- 单源最短路:Dijkstra算法 及 关于负权的讨论
描述: 对于图(有向无向都适用),求某一点到其他任一点的最短路径(不能有负权边). 操作: 1. 初始化: 一个节点大小的数组dist[n] 源点的距离初始化为0,与源点直接相连的初始化为其权重,其他 ...
随机推荐
- iOS 轻松实现自定义TabBar
自定义TabBar的案例网上不少,昨天受到开发小伙伴的影响,尝试了一下非大神的取巧思路:Demo 1.创建RootViewController,后面创建几个继承的VC,将这几个VC添加到TabBarC ...
- JAVA 实现tail -f 日志文件监控功能
工具: <dependency> <groupId>commons-io</groupId> <artifactId>commons-io</ar ...
- SLAM入门之视觉里程计(2):两视图对极约束 基础矩阵
在上篇相机模型中介绍了图像的成像过程,场景中的三维点通过"小孔"映射到二维的图像平面,可以使用下面公式描述: \[ x = MX \]其中,\(c\)是图像中的像点,\(M\)是一 ...
- 447. Number of Boomerangs
Given n points in the plane that are all pairwise distinct, a "boomerang" is a tuple of po ...
- 了解数组中的队列方法,DOM中节点的一些操作
队列的概念 栈是一种后进先出的结构,而队列是一种先进先出的结构.如银行排队,排在前面的人先办业务然后离开,后来的人站在最后.可以用队列的push()方法插入元素到队列的末尾,可以用shift()方法删 ...
- 第四节 mount /who / mkdir /rmdir /rm /cp /mv /touch /cat /tac/head /tail /more /less / chmod /chown /umask /chattr /lsattr /history /echo
***Linux下的文件类型如下: 9 8 7 6 5 4 3 2 1 0- r w x r - x r - x 第9位表示文件类型,可以为p.d.l.s.c.b和-:p表示命名管道文件 -pipe ...
- ADG监控
cx_Oracle环境配置 export ORACLE_BASE=/u01/app/oracle export ORACLE_HOME=$ORACLE_BASE/product/11.2.0/db_1 ...
- [E::hts_idx_push] NO_COOR reads not in a single block at the end 10 -1
在分析转录组数据时,用bowtie2比对生成的bam文件,下一步call peak使用m6Aviewer,需要bam文件的index文件.所以我直接敲命令 samtools index xx.bam ...
- 6、投资的一些思考 - CEO之公司管理经验谈
对于投资,前面笔者写过一个文:IT人经济思维之投资 - 创业与投资系列文章 ,里面列举了笔者自己做过的投资方面的内容.今天就说说公司投资的一些思考问题. 公司投资的问题,笔者还是那句话:关键是找出适合 ...
- DJango_生命周期
在django中,当我们访问一个url时,会通过路由匹配进入到响应的html页面中. Django的生命周期,指的就是当用户在浏览器上输入url,到用户看到整个页面之前,django后台都做了哪些事情 ...