4869: [Shoi2017]相逢是问候

  先说点正经的……

  显然做了有限次(我只知道是有限次,而且不会大,别人说是log次?)修改以后会达到不动点,即以后怎么修改都不变了。

  然后就随便做了。(3个log不知道是不是暴力啊)

  但是需要拓展欧拉定理:

  p与a不互质时,设c=b mod φ(p)(专门设出来是因为公式不能正常显示),如果b>=φ(p):$a^b ≡ a^{c+φ(p)}$(注意b<φ(p)的时候不能用)

  要证明的话可以用数学归纳法证。

可是题目翻车了……

大家都质疑题目数据有问题

得知这一点,窝的瓜心是崩溃的。

这可是省选题,关系到六个省的oier的命运。

我认识的几位dalao就参加了这场省选,有的进队,有的从此AFO。

过几天我也要省选了,要是出了类似的差错被卡退役,西瓜可是不会同意的。

为退役的选手们惋惜,也只能祝他们高考加油了。

(也许过几天就轮到我了呢?

瓜之将死,其言也善

upd:后来bzoj上数据更正了呢

#include<cstdio>
#include<algorithm>
#define MN 100001
#define lp p<<1
#define rp (p<<1)|1
using namespace std; int read_p,read_ca;
inline int read(){
read_p=;read_ca=getchar();
while(read_ca<''||read_ca>'') read_ca=getchar();
while(read_ca>=''&&read_ca<='') read_p=read_p*+read_ca-,read_ca=getchar();
return read_p;
}
int n,m,MOD,c,w=,S[MN],W[MN],a[MN],P[MN],num=,t,l,r,sum[MN<<];
bool bo[MN<<],bi[MN];
inline void M(int &x){while(x>=MOD)x-=MOD;}
inline int mi(int x,int y,int MOD,bool &bi){
int mmh=;
bool fx=;
while (y){
if (y&) bi|=fx|(1LL*x*mmh>=MOD),mmh=1LL*mmh*x%MOD;
fx|=1LL*x*x>=MOD;x=1LL*x*x%MOD;y>>=;
}
return mmh;
}
inline int phi(int p){
int o=;
for (int i=;P[i]*P[i]<=p&&i<=num;i++)
if (p%P[i]==){
p/=P[i];o*=P[i]-;
while (p%P[i]==) p/=P[i],o*=P[i];
}
if (p-) o*=p-;
return o;
}
void work(int p){
S[w++]=p;
if (p==) return;
work(phi(p));
}
int Mavis(int a,int L){
int mmh=a%S[L];
bool bi=a>=S[L];
for (int k=L;k;k--) mmh=mi(c,mmh+(bi?S[k]:),S[k-],bi);
return mmh;
}
void cg(int p,int l,int r,int L,int R){
if (bo[p]) return;
if (l==r) {W[l]++;bo[p]=(W[l]==w-);sum[p]=Mavis(a[l],W[l]);return;}
int mid=l+r>>;
if (R<=mid) cg(lp,l,mid,L,R);else
if (L>mid) cg(rp,mid+,r,L,R);else
cg(lp,l,mid,L,mid),cg(rp,mid+,r,mid+,R);
bo[p]=bo[lp]&bo[rp];
M(sum[p]=sum[lp]+sum[rp]);
}
void build(int p,int l,int r){
bo[p]=;
if (l==r) sum[p]=a[l];else{
int mid=l+r>>;
build(lp,l,mid);build(rp,mid+,r);
M(sum[p]=sum[lp]+sum[rp]);
}
}
int ask(int p,int l,int r,int L,int R){
if (l>=L&&r<=R) return sum[p];
if (l>R||r<L) return ;
int mid=l+r>>;
return (ask(lp,l,mid,L,R)+ask(rp,mid+,r,L,R))%MOD;
}
int main(){
register int i,j,k;
n=read();m=read();MOD=read();c=read();
for (i=;i*i<=MOD;i++){
if (!bo[i]) P[++num]=i;
for (j=;j<=num&&i*P[j]*i*P[j]<=MOD;j++) if (bo[i*P[j]]=,i%P[j]==) break;
}
work(MOD);S[w++]=;
for (i=;i<=n;i++) a[i]=read(),W[i]=;
build(,,n);
while (m--) if (t=read(),l=read(),r=read(),t==) cg(,,n,l,r);else printf("%d\n",ask(,,n,l,r));
}

upd:后来我退役了呢

BZOJ:4869: [Shoi2017]相逢是问候的更多相关文章

  1. bzoj 4869: [Shoi2017]相逢是问候 [扩展欧拉定理 线段树]

    4869: [Shoi2017]相逢是问候 题意:一个序列,支持区间\(a_i \leftarrow c^{a_i}\),区间求和.在模p意义下. 类似于开根操作,每次取phi在log次后就不变了. ...

  2. BZOJ4869:[SHOI2017]相逢是问候——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=4869 题面复制于洛谷:https://www.luogu.org/problemnew/show/P ...

  3. Bzoj4869: [Shoi2017]相逢是问候

    题面 传送门 Sol 摆定理 \[ a^b\equiv \begin{cases} a^{b\%\phi(p)}~~~~~~~~~~~gcd(a,p)=1\\ a^b~~~~~~~~~~~~~~~~~ ...

  4. [SHOI2017]相逢是问候

    Description 信息将你我连结.B君希望以维护一个长度为n的数组,这个数组的下标为从1到n的正整数.一共有m个操作,可以 分为两种:0 l r表示将第l个到第r个数(al,al+1,...,a ...

  5. bzoj4869: [Shoi2017]相逢是问候(欧拉函数+线段树)

    这题是六省联考的...据说数据还出了点锅,心疼六省选手QAQ 首先要知道扩展欧拉定理... 可以发现每次区间操作都会使模数进行一次phi操作,而一个数最多取logp次phi就会变成1,这时后面的指数就 ...

  6. 【bzoj4869】[Shoi2017]相逢是问候 线段树+扩展欧拉定理

    Description Informatikverbindetdichundmich. 信息将你我连结.B君希望以维护一个长度为n的数组,这个数组的下标为从1到n的正整数.一共有m个操作,可以 分为两 ...

  7. BZOJ4869 [Shoi2017]相逢是问候 【扩展欧拉定理 + 线段树】

    题目链接 BZOJ4869 题解 这题调得我怀疑人生,,结果就是因为某些地方\(sb\)地忘了取模 前置题目:BZOJ3884 扩展欧拉定理: \[c^a \equiv c^{a \mod \varp ...

  8. 【bzoj4869】[Shoi2017]相逢是问候 扩展欧拉定理+并查集+树状数组

    题目描述 Informatik verbindet dich und mich. 信息将你我连结. B君希望以维护一个长度为n的数组,这个数组的下标为从1到n的正整数.一共有m个操作,可以分为两种:0 ...

  9. [BZOJ4869][六省联考2017]相逢是问候(线段树+扩展欧拉定理)

    4869: [Shoi2017]相逢是问候 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 1313  Solved: 471[Submit][Stat ...

随机推荐

  1. jQuery: $.extend()用法总结

    1.重载原型 $.extend({},src1,src2,src3...) Jquery的扩展方法extend是我们在写插件的过程中常用的方法,该方法有一些重载原型. 它的含义是将src1,src2, ...

  2. 推荐:让你快速搞定各服务端(api,pc,mobile,wechat)代码

    如果你在写服务端 (PHP) ,会因为项目须求(做app.pc.mobiel.微信) 而写几套代码的,你不觉得很累吗? 现在的很多开源框架商用版本在做程序方面都是这么一套一套的,维护起来,二开起来特别 ...

  3. Structural Inference of Hierarchies in Networks(网络层次结构推断)

    Structural Inference of Hierarchies in Networks(网络层次结构推断) 1. 问题 层次结构是一种重要的复杂网络性质.这篇文章给出了层次结构的精确定义,给出 ...

  4. Clonezilla SE---克隆linux------转载

    引入: 本博文将会是<学生机房中的虚拟化>专题中的核心内容.因为,通过本篇博文的讲述,大家可以看到用于网络化批量部署Linux系统的Clonezilla SE搭建的全过程.注意,几乎所有命 ...

  5. ES6 函数的扩展2

    8.2 rest参数 ES6引入rest参数(形式为"-变量名"),用于获取函数的多余参数,这样就不需要使用arguments对象了. arguments对象并没有数组的方法,re ...

  6. Selinux安全机制

    1.Selinux安全机制简介 Selinux是Google在Android 4.4上正式推出的一套以SELinux为基础于核心的系统安全机制.而SELinux则是由美国NSA(国安局)和一些公司(R ...

  7. shell 踩坑记

    变量赋值时,等号两边不能有空格: 在判断表达式中,不论是 [ -n "$1" ] 还是 [ -f  "$1" ] 都要在变量两侧加上双引号: 在使用与或非判断式 ...

  8. Web API系列之三 基本功能实现

    Web API系列之二讲解了如何搭建一个WebApi的基架,本文主要在其基础之上实现基本的功能.下面开始逐步操作: 一.配置WebApi的路由-用于配置外部如何访问内部资源的url的规则 1.添加Gl ...

  9. Navicat for MySQL定时备份数据库及数据恢复

    在做数据库修改或删除操作中,可能会导致数据错误,甚至数据库奔溃,而有效的定时备份能很好地保护数据库.本篇文章主要讲述Navicat for MySQL定时备份数据库和数据恢复等功能,同时可以定时播放电 ...

  10. 【转】String Date Calendar之间的转换

    1.Calendar 转化 String Calendar calendat = Calendar.getInstance(); SimpleDateFormat sdf = new SimpleDa ...