4869: [Shoi2017]相逢是问候

  先说点正经的……

  显然做了有限次(我只知道是有限次,而且不会大,别人说是log次?)修改以后会达到不动点,即以后怎么修改都不变了。

  然后就随便做了。(3个log不知道是不是暴力啊)

  但是需要拓展欧拉定理:

  p与a不互质时,设c=b mod φ(p)(专门设出来是因为公式不能正常显示),如果b>=φ(p):$a^b ≡ a^{c+φ(p)}$(注意b<φ(p)的时候不能用)

  要证明的话可以用数学归纳法证。

可是题目翻车了……

大家都质疑题目数据有问题

得知这一点,窝的瓜心是崩溃的。

这可是省选题,关系到六个省的oier的命运。

我认识的几位dalao就参加了这场省选,有的进队,有的从此AFO。

过几天我也要省选了,要是出了类似的差错被卡退役,西瓜可是不会同意的。

为退役的选手们惋惜,也只能祝他们高考加油了。

(也许过几天就轮到我了呢?

瓜之将死,其言也善

upd:后来bzoj上数据更正了呢

#include<cstdio>
#include<algorithm>
#define MN 100001
#define lp p<<1
#define rp (p<<1)|1
using namespace std; int read_p,read_ca;
inline int read(){
read_p=;read_ca=getchar();
while(read_ca<''||read_ca>'') read_ca=getchar();
while(read_ca>=''&&read_ca<='') read_p=read_p*+read_ca-,read_ca=getchar();
return read_p;
}
int n,m,MOD,c,w=,S[MN],W[MN],a[MN],P[MN],num=,t,l,r,sum[MN<<];
bool bo[MN<<],bi[MN];
inline void M(int &x){while(x>=MOD)x-=MOD;}
inline int mi(int x,int y,int MOD,bool &bi){
int mmh=;
bool fx=;
while (y){
if (y&) bi|=fx|(1LL*x*mmh>=MOD),mmh=1LL*mmh*x%MOD;
fx|=1LL*x*x>=MOD;x=1LL*x*x%MOD;y>>=;
}
return mmh;
}
inline int phi(int p){
int o=;
for (int i=;P[i]*P[i]<=p&&i<=num;i++)
if (p%P[i]==){
p/=P[i];o*=P[i]-;
while (p%P[i]==) p/=P[i],o*=P[i];
}
if (p-) o*=p-;
return o;
}
void work(int p){
S[w++]=p;
if (p==) return;
work(phi(p));
}
int Mavis(int a,int L){
int mmh=a%S[L];
bool bi=a>=S[L];
for (int k=L;k;k--) mmh=mi(c,mmh+(bi?S[k]:),S[k-],bi);
return mmh;
}
void cg(int p,int l,int r,int L,int R){
if (bo[p]) return;
if (l==r) {W[l]++;bo[p]=(W[l]==w-);sum[p]=Mavis(a[l],W[l]);return;}
int mid=l+r>>;
if (R<=mid) cg(lp,l,mid,L,R);else
if (L>mid) cg(rp,mid+,r,L,R);else
cg(lp,l,mid,L,mid),cg(rp,mid+,r,mid+,R);
bo[p]=bo[lp]&bo[rp];
M(sum[p]=sum[lp]+sum[rp]);
}
void build(int p,int l,int r){
bo[p]=;
if (l==r) sum[p]=a[l];else{
int mid=l+r>>;
build(lp,l,mid);build(rp,mid+,r);
M(sum[p]=sum[lp]+sum[rp]);
}
}
int ask(int p,int l,int r,int L,int R){
if (l>=L&&r<=R) return sum[p];
if (l>R||r<L) return ;
int mid=l+r>>;
return (ask(lp,l,mid,L,R)+ask(rp,mid+,r,L,R))%MOD;
}
int main(){
register int i,j,k;
n=read();m=read();MOD=read();c=read();
for (i=;i*i<=MOD;i++){
if (!bo[i]) P[++num]=i;
for (j=;j<=num&&i*P[j]*i*P[j]<=MOD;j++) if (bo[i*P[j]]=,i%P[j]==) break;
}
work(MOD);S[w++]=;
for (i=;i<=n;i++) a[i]=read(),W[i]=;
build(,,n);
while (m--) if (t=read(),l=read(),r=read(),t==) cg(,,n,l,r);else printf("%d\n",ask(,,n,l,r));
}

upd:后来我退役了呢

BZOJ:4869: [Shoi2017]相逢是问候的更多相关文章

  1. bzoj 4869: [Shoi2017]相逢是问候 [扩展欧拉定理 线段树]

    4869: [Shoi2017]相逢是问候 题意:一个序列,支持区间\(a_i \leftarrow c^{a_i}\),区间求和.在模p意义下. 类似于开根操作,每次取phi在log次后就不变了. ...

  2. BZOJ4869:[SHOI2017]相逢是问候——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=4869 题面复制于洛谷:https://www.luogu.org/problemnew/show/P ...

  3. Bzoj4869: [Shoi2017]相逢是问候

    题面 传送门 Sol 摆定理 \[ a^b\equiv \begin{cases} a^{b\%\phi(p)}~~~~~~~~~~~gcd(a,p)=1\\ a^b~~~~~~~~~~~~~~~~~ ...

  4. [SHOI2017]相逢是问候

    Description 信息将你我连结.B君希望以维护一个长度为n的数组,这个数组的下标为从1到n的正整数.一共有m个操作,可以 分为两种:0 l r表示将第l个到第r个数(al,al+1,...,a ...

  5. bzoj4869: [Shoi2017]相逢是问候(欧拉函数+线段树)

    这题是六省联考的...据说数据还出了点锅,心疼六省选手QAQ 首先要知道扩展欧拉定理... 可以发现每次区间操作都会使模数进行一次phi操作,而一个数最多取logp次phi就会变成1,这时后面的指数就 ...

  6. 【bzoj4869】[Shoi2017]相逢是问候 线段树+扩展欧拉定理

    Description Informatikverbindetdichundmich. 信息将你我连结.B君希望以维护一个长度为n的数组,这个数组的下标为从1到n的正整数.一共有m个操作,可以 分为两 ...

  7. BZOJ4869 [Shoi2017]相逢是问候 【扩展欧拉定理 + 线段树】

    题目链接 BZOJ4869 题解 这题调得我怀疑人生,,结果就是因为某些地方\(sb\)地忘了取模 前置题目:BZOJ3884 扩展欧拉定理: \[c^a \equiv c^{a \mod \varp ...

  8. 【bzoj4869】[Shoi2017]相逢是问候 扩展欧拉定理+并查集+树状数组

    题目描述 Informatik verbindet dich und mich. 信息将你我连结. B君希望以维护一个长度为n的数组,这个数组的下标为从1到n的正整数.一共有m个操作,可以分为两种:0 ...

  9. [BZOJ4869][六省联考2017]相逢是问候(线段树+扩展欧拉定理)

    4869: [Shoi2017]相逢是问候 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 1313  Solved: 471[Submit][Stat ...

随机推荐

  1. SPARQL查询语言

    SPARQL的查询是基于结构化知识的,变无序数据为有序知识,让计算机理解Web信息,即语义Web.现如今,语义网适用于各个领域,包括语义出版.语义知识库等.SPARQL是针对以RDF框架进行存储的知识 ...

  2. Python 初体验

    2017的最后一天,在QC的谆谆教诲下,我终于写(背)了九道题,对Python的基本语法有了一个大致了解. 1.A+B+C 就是为了练输入,line=input().split()  录入列表,分割开 ...

  3. [置顶] xamarin android Fragment实现底部导航栏

    前段时间写了篇关于Fragment的文章,介绍了基础的概念,用静态和动态的方式加载Fragment  Xamarin Android Fragment的两种加载方式.下面的这个例子介绍xamarin ...

  4. C#中级-Windows Service程序安装注意事项

    一.前言 这周除了改写一些识别算法外,继续我的Socket服务编写.服务器端的Socket服务是以Windows Service的形式运行的. 在我完成Windows Service编写后,启动服务时 ...

  5. ubuntu12.04destdrop删除不必要的软件

    sudo apt-get -y --auto-remove purge unity unity-2d*  sudo apt-get -y purge empathy  sudo apt-get -y ...

  6. Visual studio code离线安装插件

    Visual studio code离线安装插件 公司研发区不能连接公网,使用Visual studio code(vsc)写Golang代码需要安装Go插件,下面介绍下,vsc离线安装插件的步骤.以 ...

  7. Java禁止浏览器有缓存的源码

    Java禁止浏览器有缓存的源码 import java.io.IOException; import javax.servlet.Filter; import javax.servlet.Filter ...

  8. csv文件转json

    http://stackoverflow.com/questions/19766266/directly-convert-csv-file-to-json-file-using-the-jackson ...

  9. Gradle、Gradle Wrapper与Android Plugin for Gradle

    欢迎和大家交流技术相关问题: 邮箱: jiangxinnju@163.com 博客园地址: http://www.cnblogs.com/jiangxinnju GitHub地址: https://g ...

  10. sp_tableoption

    设置用户定义表的选项值.sp_tableoption 可用于控制包含varchar(max).nvarchar(max).varbinary(max).xml.text.ntext 或 image 列 ...