HDU 4549
水题: 费马小定理+快速幂+矩阵快速幂
(第一次用到费马小定理)
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL MOD = 1000000006;
const LL MOD1 = 1000000007;
struct Matrix
{
LL NUM[2][2];
Matrix operator + (const Matrix a) const
{
Matrix c;
for(int i = 0; i < 2; ++i)
{
for(int j = 0; j < 2; ++j)
{
c.NUM[i][j] = NUM[i][j] + a.NUM[i][j];
}
}
return c;
}
Matrix operator * (const Matrix a) const
{
Matrix c;
for(int i = 0; i < 2; ++i)
{
for(int j = 0; j < 2; ++j)
{
c.NUM[i][j] = 0;
for(int k = 0; k < 2; ++k)
c.NUM[i][j] = (c.NUM[i][j] + NUM[i][k] * a.NUM[k][j] % MOD) % MOD;
}
}
return c;
}
}; Matrix ppow(Matrix a, LL n)
{
Matrix ret;
for(int i =0 ; i< 2; ++i)
{
for(int j = 0; j < 2; ++j)
ret.NUM[i][j] = i==j ? 1 : 0;
}
while(n)
{
if(n & 1) ret = ret * a;
a = a * a;
n >>= 1;
}
return ret;
} LL Pow(LL a, LL n)
{
LL ret = 1;
while(n)
{
if(n & 1) ret =ret * a % MOD1;
a = a * a % MOD1;
n >>= 1;
}
return ret;
} int main()
{
LL a, b, n;
Matrix E;
E.NUM[0][0] = 1; E.NUM[0][1] = 1;
E.NUM[1][0] = 1; E.NUM[1][1] = 0;
while(cin >> a >> b >> n)
{
if(n == 0) cout << a << endl;
else if(n == 1) cout << b << endl;
else
{
n -= 1;
Matrix tmp = ppow(E,n);
LL na = tmp.NUM[0][1] , nb = tmp.NUM[0][0];
LL ans = (Pow(a,na) * Pow(b,nb))%MOD1;
cout << ans << endl;
}
}
return 0;
}
HDU 4549的更多相关文章
- HDU 4549 M斐波那契数列(矩阵幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4549 题意:F[0]=a,F[1]=b,F[n]=F[n-1]*F[n-2]. 思路:手算一下可以发现 ...
- hdu 4549 M斐波那契数列(矩阵高速幂,高速幂降幂)
http://acm.hdu.edu.cn/showproblem.php?pid=4549 f[0] = a^1*b^0%p,f[1] = a^0*b^1%p,f[2] = a^1*b^1%p... ...
- hdu 4549 M斐波那契数列(快速幂 矩阵快速幂 费马小定理)
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4549: 题目是中文的很容易理解吧.可一开始我把题目看错了,这毛病哈哈. 一开始我看错题时,就用了一个快速 ...
- [HDU 4549] M斐波那契数列
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- HDU 4549 M斐波那契数列(矩阵快速幂)
题目链接:M斐波那契数列 题意:$F[0]=a,F[1]=b,F[n]=F[n-1]*F[n-2]$.给定$a,b,n$,求$F[n]$. 题解:暴力打表后发现$ F[n]=a^{fib(n-1)} ...
- hdu 4549 M斐波拉契 (矩阵快速幂 + 费马小定理)
Problem DescriptionM斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在 ...
- hdu 4549 矩阵快速幂
题意: M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F ...
- hdu 4549 M斐波那契数列 矩阵快速幂+欧拉定理
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Problem ...
- HDU 4549 M斐波那契数列(矩阵快速幂+费马小定理)
M斐波那契数列 Time Limit : 3000/1000ms (Java/Other) Memory Limit : 65535/32768K (Java/Other) Total Submi ...
随机推荐
- 认证加密算法php hash_hmac和java hmacSha1的问题
public class Test{ public static void main(String[] args) throws Exception { String postString = &qu ...
- python3.x与2.x区别
1.性能 Py3.0运行 pystone benchmark的速度比Py2.5慢30%.Guido认为Py3.0有极大的优化空间,在字符串和整形操作上可 以取得很好的优化结果. Py3.1性能比Py2 ...
- 建立一个漂亮的PHP验证码类文件及调用方式
//验证码类class ValidateCode { private $charset = 'abcdefghkmnprstuvwxyzABCDEFGHKMNPRSTUVWXYZ23456789';/ ...
- IT界的一些朗朗上口的名言
序 中国有很多古代警世名言,朗朗上口,凝聚了很多故事与哲理.硅谷的互联网公司里头也有一些这样的名言,凝聚了很多公司价值观和做事的方法,对于很多程序员来说,其影响潜移默化.这里收集了一些,如下. Sta ...
- Spring中的@Transactional(rollbackFor = Exception.class)属性详解
序言 今天我在写代码的时候,看到了.一个注解@Transactional(rollbackFor = Exception.class),今天就和大家分享一下,这个注解的用法: 异常 如下图所示,我们都 ...
- 【译】第八篇 SQL Server安全数据加密
本篇文章是SQL Server安全系列的第八篇,详细内容请参考原文. Relational databases are used in an amazing variety of applicatio ...
- 【blog】MarkDown语法解析为HTML工具
txtmark <dependency> <groupId>es.nitaur.markdown</groupId> <artifactId>txtma ...
- 编写blog第一天
今天玩的比较嗨,离开学还剩半个月了,之前在网上搜集了一些blog制作方面的资料,并且在博客园注册了一个账号,今天才打开了申请已久的blog,现在已经对blog具有的基本功能和界面布局有了比较全面的掌握 ...
- Grouping ZOJ - 3795 (tarjan缩点求最长路)
题目链接:https://cn.vjudge.net/problem/ZOJ-3795 题目大意:给你n个人,m个关系, 让你对这个n个人进行分组,要求:尽可能的分组最少,然后每个组里面的人都没有关系 ...
- #6278. 数列分块入门 2(询问区间内小于某个值 xx 的元素个数)
题目链接:https://loj.ac/problem/6278 题目大意:中文题目 具体思路:数列分块模板题,对于更新的时候,我们通过一个辅助数组来进行,对于原始的数组,我们只是用来加减,然后这个辅 ...