FPN(feature pyramid networks)
多尺度的object detection算法:FPN(feature pyramid networks)。
原来多数的object detection算法都是只采用顶层特征做预测,但我们知道低层的特征语义信息比较少,但是目标位置准确;高层的特征语义信息比较丰富,但是目标位置比较粗略。另外虽然也有些算法采用多尺度特征融合的方式,但是一般是采用融合后的特征做预测,而本文不一样的地方在于预测是在不同特征层独立进行的。
下图FIg1展示了4种利用特征的形式:
(a)图像金字塔,即将图像做成不同的scale,然后不同scale的图像生成对应的不同scale的特征。这种方法的缺点在于增加了时间成本。有些算法会在测试时候采用图像金字塔。
(b)像SPP net,Fast RCNN,Faster RCNN是采用这种方式,即仅采用网络最后一层的特征。
(c)像SSD(Single Shot Detector)采用这种多尺度特征融合的方式,没有上采样过程,即从网络不同层抽取不同尺度的特征做预测,这种方式不会增加额外的计算量。作者认为SSD算法中没有用到足够低层的特征(在SSD中,最低层的特征是VGG网络的conv4_3),而在作者看来足够低层的特征对于检测小物体是很有帮助的。
(d)本文作者是采用这种方式,顶层特征通过上采样和低层特征做融合,而且每层都是独立预测的。
如下图Fig2。上面一个带有skip connection的网络结构在预测的时候是在finest level(自顶向下的最后一层)进行的,简单讲就是经过多次上采样并融合特征到最后一步,拿最后一步生成的特征做预测。而下面一个网络结构和上面的类似,区别在于预测是在每一层中独立进行的。后面有这两种结构的实验结果对比,非常有意思,因为之前只见过使用第一种特征融合的方式。
作者的主网络采用ResNet
算法结构大致如下Fig3:一个自底向上的线路,一个自顶向下的线路,横向连接(lateral connection)。
图中放大的区域就是横向连接,这里1*1的卷积核的主要作用是减少卷积核的个数,也就是减少了feature map的个数,并不改变feature map的尺寸大小。
自底向上其实就是网络的前向过程。在前向过程中,feature map的大小在经过某些层后会改变,而在经过其他一些层的时候不会改变,作者将不改变feature map大小的层归为一个stage,因此每次抽取的特征都是每个stage的最后一个层输出,这样就能构成特征金字塔。
自顶向下的过程采用上采样(upsampling)进行,而横向连接则是将上采样的结果和自底向上生成的相同大小的feature map进行融合(merge)。在融合之后还会再采用3*3的卷积核对每个融合结果进行卷积,目的是消除上采样的混叠效应(aliasing effect)。并假设生成的feature map结果是P2,P3,P4,P5,和原来自底向上的卷积结果C2,C3,C4,C5一一对应。
作者一方面将FPN放在RPN网络中用于生成proposal,原来的RPN网络是以主网络的某个卷积层输出的feature map作为输入,简单讲就是只用这一个尺度的feature map。但是现在要将FPN嵌在RPN网络中,生成不同尺度特征并融合作为RPN网络的输入。在每一个scale层,都定义了不同大小的anchor,对于P2,P3,P4,P5,P6这些层,定义anchor的大小为32^2,64^2,128^2,256^2,512^2,另外每个scale层都有3个长宽对比度:1:2,1:1,2:1。所以整个特征金字塔有15种anchor。
正负样本的界定和Faster RCNN差不多:如果某个anchor和一个给定的ground truth有最高的IOU或者和任意一个Ground truth的IOU都大于0.7,则是正样本。如果一个anchor和任意一个ground truth的IOU都小于0.3,则为负样本。
看看加入FPN的RPN网络的有效性,如下表Table1。网络这些结果都是基于ResNet-50。评价标准采用AR,AR表示Average Recall,AR右上角的100表示每张图像有100个anchor,AR的右下角s,m,l表示COCO数据集中object的大小分别是小,中,大。feature列的大括号{}表示每层独立预测。
从(a)(b)(c)的对比可以看出FRN的作用确实很明显。另外(a)和(b)的对比可以看出高层特征并非比低一层的特征有效。
(d)表示只有横向连接,而没有自顶向下的过程,也就是仅仅对自底向上(bottom-up)的每一层结果做一个11的横向连接和33的卷积得到最终的结果,有点像Fig1的(b)。从feature列可以看出预测还是分层独立的。作者推测(d)的结果并不好的原因在于在自底向上的不同层之间的semantic gaps比较大。
(e)表示有自顶向下的过程,但是没有横向连接,即向下过程没有融合原来的特征。这样效果也不好的原因在于目标的location特征在经过多次降采样和上采样过程后变得更加不准确。
(f)采用finest level层做预测(参考Fig2的上面那个结构),即经过多次特征上采样和融合到最后一步生成的特征用于预测,主要是证明金字塔分层独立预测的表达能力。显然finest level的效果不如FPN好,原因在于PRN网络是一个窗口大小固定的滑动窗口检测器,因此在金字塔的不同层滑动可以增加其对尺度变化的鲁棒性。另外(f)有更多的anchor,说明增加anchor的数量并不能有效提高准确率。
作者提出的FPN(Feature Pyramid Network)算法同时利用低层特征高分辨率和高层特征的高语义信息,通过融合这些不同层的特征达到预测的效果。并且预测是在每个融合后的特征层上单独进行的,这和常规的特征融合方式不同。
FPN(feature pyramid networks)的更多相关文章
- Feature Pyramid Networks for Object Detection比较FPN、UNet、Conv-Deconv
https://vitalab.github.io/deep-learning/2017/04/04/feature-pyramid-network.html Feature Pyramid Netw ...
- 论文阅读笔记三十三:Feature Pyramid Networks for Object Detection(FPN CVPR 2017)
论文源址:https://arxiv.org/abs/1612.03144 代码:https://github.com/jwyang/fpn.pytorch 摘要 特征金字塔是用于不同尺寸目标检测中的 ...
- 『计算机视觉』FPN:feature pyramid networks for object detection
对用卷积神经网络进行目标检测方法的一种改进,通过提取多尺度的特征信息进行融合,进而提高目标检测的精度,特别是在小物体检测上的精度.FPN是ResNet或DenseNet等通用特征提取网络的附加组件,可 ...
- 【Network Architecture】Feature Pyramid Networks for Object Detection(FPN)论文解析(转)
目录 0. 前言 1. 博客一 2.. 博客二 0. 前言 这篇论文提出了一种新的特征融合方式来解决多尺度问题, 感觉挺有创新性的, 如果需要与其他网络进行拼接,还是需要再回到原文看一下细节.这里 ...
- Feature Pyramid Networks for Object Detection
Feature Pyramid Networks for Object Detection 特征金字塔网络用于目标检测 论文地址:https://arxiv.org/pdf/1612.03144.pd ...
- 特征金字塔网络Feature Pyramid Networks
小目标检测很难,为什么难.想象一下,两幅图片,尺寸一样,都是拍的红绿灯,但是一副图是离得很近的拍的,一幅图是离得很远的拍的,红绿灯在图片里只占了很小的一个角落,即便是对人眼而言,后者图片中的红绿灯也更 ...
- FPN(feature pyramid networks)
多数的object detection算法都是只采用顶层特征做预测,但我们知道低层的特征语义信息比较少,但是目标位置准确:高层的特征语义信息比较丰富,但是目标位置比较粗略.另外虽然也有些算法采用多尺度 ...
- 论文阅读 | FPN:Feature Pyramid Networks for Object Detection
论文地址:https://arxiv.org/pdf/1612.03144v2.pdf 代码地址:https://github.com/unsky/FPN 概述 FPN是FAIR发表在CVPR 201 ...
- FPN-Feature Pyramid Networks for Object Detection
FPN-Feature Pyramid Networks for Object Detection 标签(空格分隔): 深度学习 目标检测 这次学习的论文是FPN,是关于解决多尺度问题的一篇论文.记录 ...
随机推荐
- SpringMVC-Controller
接上: web.xml Spring-servlet.xml Controller层是控制层,在其类上添加@Controller注解,会被Spring-servlet.xml中的<context ...
- mysql中什么是逻辑备份
需求描述: mysql中,或者说关系型数据库中逻辑备份到底指的是什么呢,主要还是对于 概念的理解,在此记录下. 概念解释: 逻辑备份:主要指的是保存数据库的逻辑结构(比如:create dattaba ...
- SDUT -refresh的停车场(栈和队列)
题目描写叙述 refresh近期发了一笔横財,开了一家停车场.因为土地有限,停车场内停车数量有限,可是要求进停车场的车辆过多. 当停车场满时,要进入的车辆会进入便道等待.最先进入便道的车辆会优先 进 ...
- Exception in thread "main" java.lang.NoSuchMethodError: org.testng.TestNG.configure(Lorg/testng/CommandLineArgs;)V
TestNG运行时报以下错误: Exception in thread "main" java.lang.NoSuchMethodError: org.testng.TestNG. ...
- scala函数进阶篇
1.求值策略scala里有两种求值策略Call By Value -先对函数实参求值,在函数体中用这个求出的参数值.Call By Name -先不对函数实参求值,而是函数实参每次在函数体内被用到时都 ...
- 数组内Merge
数组al[0...mid-1]和al[mid...num-1]两个部分都已经分别排好序.要求合并使得整个数组al有序.请给出合并merge的代码.要求空间复杂度为O(1). /* 数组a[begin, ...
- Python 数据类型:字符串
一.字符串介绍 字符串是由单引号/双引号/三引号引起来的,由字母 .数字或符号等构成的一串字符 In [1]: name = "Tom" # 定义字符串 In [2]: type( ...
- php截取中文字符串时乱码问题
<?php function chinesesubstr($str,$start,$len) { //$str指字符串,$start指字符串的起始位置,$len指字符串长度 $strlen=$s ...
- js里面正则表示满足多个条件的写法
实例,满足条件里面必须包含数字,字母和下划线组成 代码如下: var reg = /^([a-z]+\d+\_+)|([a-z]+\_+\d+)|(\_+[a-z]+\d+)|(\_+\d+[a-z] ...
- php查询操作实现投票功能
这篇文章主要为大家详细介绍了php查询操作实现投票功能的具体代码,具有一定的参考价值,感兴趣的小伙伴们可以参考一下 本文实例为大家分享了php查询操作实现投票功能的代码,供大家参考,具体内容如下 ...