BZOJ 1047 二维单调队列
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1047
题意:见中文题面
思路:该题是求二维的子矩阵的最大值与最小值的差值尽量小。所以可以考虑求出每个子矩阵的最大值和最小值。考虑一维求子段的最小值/最大值的思路。滑动窗口+单调队列。 转换成二维。设minNum[i][j]表示右下角为(i,j)的子矩阵的最小值。先对矩阵每一行用一维的做法求出每一行的子段的最小值,然后同样的方法求列的最值。注意在求列的子段最小值时比较的元素不是原矩阵的元素而是用行求的结果来比较。 具体看代码吧。
#define _CRT_SECURE_NO_DEPRECATE
#include<stdio.h>
#include<string.h>
#include<cstring>
#include<algorithm>
#include<queue>
#include<math.h>
#include<time.h>
#include<vector>
#include<iostream>
#include<string>
using namespace std;
typedef long long int LL;
const int MAXN = + ;
const int INF = 0x3f3f3f3f;
int n, m, k, num[MAXN][MAXN], minNum[MAXN][MAXN], maxNum[MAXN][MAXN];
void solve(int type, int seg[][MAXN]){
deque<pair<int, int> > deq;
for (int i = ; i <= n; i++){ //求行子段的最值。
deq.clear();
for (int j = ; j <= m; j++){
while (!deq.empty() && j - deq.front().second >= k){ deq.pop_front(); }
if (type){
while (!deq.empty() && deq.back().first < num[i][j]){ deq.pop_back(); }
}
else{
while (!deq.empty() && deq.back().first > num[i][j]){ deq.pop_back(); }
}
deq.push_back(make_pair(num[i][j], j));
seg[i][j] = deq.front().first;
}
}
for (int j = ; j <= m; j++){ //求列的最值
deq.clear();
for (int i = ; i <= n; i++){
while (!deq.empty() && i - deq.front().second >= k){ deq.pop_front(); }
if (type){
while (!deq.empty() && deq.back().first < seg[i][j]){ deq.pop_back(); }
}
else{
while (!deq.empty() && deq.back().first > seg[i][j]){ deq.pop_back(); }
}
deq.push_back(make_pair(seg[i][j], i));
seg[i][j] = deq.front().first;
}
}
}
int main(){
//#ifdef kirito
// freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
//#endif
// int start = clock();
while (~scanf("%d%d%d", &n, &m, &k)){
for (int i = ; i <= n; i++){
for (int j = ; j <= m; j++){
scanf("%d", &num[i][j]);
}
}
int ans = INF;
solve(, minNum); solve(, maxNum);
////Debug
//printf("minNum Segment:\n");
//for (int i = 1; i <= n; i++){
// for (int j = 1; j <= m; j++){
// printf("%d ", minNum[i][j]);
// }
// printf("\n");
//}
//printf("maxNum Segment:\n");
//for (int i = 1; i <= n; i++){
// for (int j = 1; j <= m; j++){
// printf("%d ", maxNum[i][j]);
// }
// printf("\n");
//}
for (int i = k; i <= n; i++){
for (int j = k; j <= m; j++){
ans = min(ans, maxNum[i][j] - minNum[i][j]);
}
}
printf("%d\n", ans);
}
//#ifdef LOCAL_TIME
// cout << "[Finished in " << clock() - start << " ms]" << endl;
//#endif
return ;
}
BZOJ 1047 二维单调队列的更多相关文章
- bzoj1047-理想的正方形(二维单调队列)
题意: 给一个矩阵,给出行列和每个数,再给出一个N,求出所有N*N的子矩阵中最大值最小值之差的最小值解析: 暴力枚举肯定不行,这题可以用二维单调队列做,把同一行的连续N个点缩成一个点保存最大最小值预处 ...
- 【二维单调队列】BZOJ1047-[HAOI2007]理想的正方形
[题目大意] 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. [思路] 裸的二维单调队列.二维单调队列的思路其实很简单: (1)对于每 ...
- [BZOJ1047][HAOI2007]理想的正方形 二维单调队列
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1047 我们对每矩阵的一列维护一个大小为$n$的单调队列,队中元素为矩阵中元素.然后扫描每一 ...
- bzoj1047 [HAOI2007]理想的正方形——二维单调队列
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1047 就是先对行做一遍单调队列,再对那个结果按列做一遍单调队列即可. 代码如下: #incl ...
- [luoguP2216] [HAOI2007]理想的正方形(二维单调队列)
传送门 1.先弄个单调队列求出每一行的区间为n的最大值最小值. 2.然后再搞个单调队列求1所求出的结果的区间为n的最大值最小值 3.最后扫一遍就行 懒得画图,自己体会吧. ——代码 #include ...
- bzoj 2216: Lightning Conductor 单调队列优化dp
题目大意 已知一个长度为\(n\)的序列\(a_1,a_2,...,a_n\)对于每个\(1\leq i\leq n\),找到最小的非负整数\(p\)满足: 对于任意的\(j\), \(a_j \le ...
- BZOJ 1855 股票交易(单调队列优化DP)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1855 题意:最近lxhgww又迷上了投资股票, 通过一段时间的观察和学习,他总结出了股票 ...
- BZOJ 2424 订货(贪心+单调队列)
怎么题解都是用费用流做的啊...用单调队列多优美啊. 题意:某公司估计市场在第i个月对某产品的需求量为Ui,已知在第i月该产品的订货单价为di,上个月月底未销完的单位产品要付存贮费用m,假定第一月月初 ...
- BZOJ 1012 线段树||单调队列
非常裸的线段树 || 单调队列: 假设一个节点在队列中既没有时间优势(早点入队)也没有值优势(值更大),那么显然不管在如何的情况下都不会被选为最大值. 既然它仅仅在末尾选.那么自然能够满足以上的条件 ...
随机推荐
- 报错com/android/dx/command/dexer/Main : Unsupported major.minor version 52.0
看着错误信息应该是从高版本换成低版本报的错误,然而我的JDK并没有变动.会像昨天走之前干了什么? 自己在AndroidStudio上倒弄自己的小项目,更新了build tools到24了 删除24,e ...
- CSS清浮动处理(Clear与BFC)
在CSS布局中float属性经常会被用到,但使用float属性后会使其在普通流中脱离父容器,让人很苦恼 1 浮动带来布局的便利,却也带来了新问题 <!doctype html> <h ...
- Ajax工作原理
在写这篇文章之前,曾经写过一篇关于AJAX技术的随笔,不过涉及到的方面很窄,对AJAX技术的背景.原理.优缺点等各个方面都很少涉及null.这次写这篇文章的背景是因为公司需要对内部程序员做一个培训.项 ...
- JDK,JRE,JVM,三者的区别于联系?
万事开头难,从基础抓起! 下载JDK官网:http://www.oracle.com/technetwork/java/javase/downloads/index.html JDK:Java Dev ...
- python 2.7 学习笔记--文件的基本操作
1.打开文件的方式 file_obj = file("文件路径","模式") file_obj = open("文件路径","模式 ...
- web自动化工具-Browsersync
web自动化工具-Browsersync browser-sync才是神器中的神器,和livereload一样支持监听所有文件.可是和livereload简单粗暴的F5刷新相比,browsersync ...
- Qt 二维码
1.生成二维码 利用第三方库qrencode ,将qrencode源码添加到自己的程序中,直接调用使用. 参考http://blog.csdn.net/zhangxufei/article/detai ...
- Web项目使用Oracle.DataAccess.dll 类库连接oracle数据库
首先我用的工具是oracle 32位免安装版+Oracle.DataAccess.dll 32位 文件版本4.121.1.0+vs2013 +win7 64位 Oracle.DataAccess.d ...
- CorelDRAW各版本安装软件下载
CorelDRAW X8 SP6-32位64位免激活免登陆版 百度网盘下载地址 提取密码:1z6w CorelDraw X7 (64位) 简体中文完整版: 百度网盘下载地址 提取密码:sqaw C ...
- 通过数组和枚举简化GPIO操作编码
在工作中,经常遇到大量使用GPIO作为数字量输入输出来控制设备或采集状态,每次定义操作不同的GPIO针脚既麻烦又容易出错,于是就想要简化操作过程.对于数字量输入来说就是采集对应针脚的状态:而输出则是根 ...