次元传送门:洛谷P1073

思路

一开始看题目嗅出了强连通分量的气息 但是嫌长没打 听机房做过的dalao说可以用分层图 从来没用过 就参考题解了解一下

因为每个城市可以走好几次 所以说我们可以在图上随意走动

所以第一层图就建一个边权为0的图 随意走动不影响

考虑在某个点买入水晶球

建立一条有向边到新图上 边权为-w[i] 指向i所能到达的点(第二层图中)

它表示:假如我选择走了这条边,就是我在这个点买了这个水晶球,我不会反悔,并且我接下来考虑在某个点卖它。

考虑在某个点卖出水晶球

从第二层图建立一条有向边到新图中 边权为w[i] 指向i所能到达的点(第三层图中)

它表示:假如我选择走了这条边,就是我在这个点卖了这个水晶球,我不会反悔,并且我接下来考虑走向终点。

现在我们只需要从第一层图走到第二层图再走到第三层图再走到终点即可 而且分层图把所有情况考虑到了

走向终点有两种情况

  • 不买卖直接走向终点 在第一层图的终点连一条有向边 边权为0 到最后终点
  • 要买卖再走向终点 在第三层图的终点连一条有向边 边权为0 到最后终点

由于有向边的建立,你不能从第二/三层走回第一层图,这保证了你只做一次买卖,而不是无限做买卖,符合了题目的要求(分层图的意义)

而我们最终的答案 就是求从第一层图的1号点 经过三层图走到“最后终点”的最长路

来自你谷dalao的图解:

代码

#include<iostream>
#include<vector>
#include<queue>
using namespace std;
#define maxn 100010
#define INF 1e9+7
struct Edge
{
int v;
int len;
};
int n,m;
bool vis[maxn*+];
int w[maxn],dis[maxn*+];
vector <Edge> G[maxn*+];
void spfa()//常规SPFA
{
for(int i=;i<=n;i++) dis[i]=-INF;
queue <int> q;
q.push();
dis[]=;
vis[]=;
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=;
for(int i=;i<G[u].size();i++)
{
Edge x=G[u][i];
if(dis[x.v]<dis[u]+x.len)
{
dis[x.v]=dis[u]+x.len;
if(!vis[x.v])
{
vis[x.v]=;
q.push(x.v);
}
}
}
}
}
void add(int u,int v)
{
G[u].push_back((Edge){v,});//第一层
G[n+u].push_back((Edge){n+v,});//第二层 用n+1到2*n
G[*n+u].push_back((Edge){*n+v,});//第三层 用2*n+1到3*n
G[u].push_back((Edge){n+v,-w[u]});//从第一层到第二层
G[u+n].push_back((Edge){*n+v,w[u]});//从第二层到第三层
}
int main()
{
cin>>n>>m;
for(int i=;i<=n;i++) cin>>w[i];
for(int i=;i<=m;i++)
{
int x,y,z;
cin>>x>>y>>z;
add(x,y);
if(z==) add(y,x);
}
G[n].push_back((Edge){*n+,});//第一层终点到最后终点
G[*n].push_back((Edge){*n+,});//第三层终点到最后终点
n=*n+;//更改最后终点
spfa();
cout<<dis[n];
}

【题解】洛谷P1073 [NOIP2009TG] 最优贸易(SPFA+分层图)的更多相关文章

  1. 【洛谷P1073】最优贸易

    题目大意:给定一个 N 个点,M 条边(存在反向边)的有向图,点有点权,求一条从 1 到 N 的路径上,任意选出两个点 p,q (p 在前,q在后),两点点权的差值最大. 根据最短路的 dp 思想,可 ...

  2. 【洛谷 P1073】 最优贸易 (Tarjan缩点+拓扑排序)

    题目链接 先\(Tarjan\)缩点,记录每个环内的最大值和最小值. 然后跑拓扑排序,\(Min[u]\)表示到\(u\)的最小值,\(ans[u]\)表示到\(u\)的答案,\(Min\)和\(an ...

  3. P1073 最优贸易 建立分层图 + spfa

    P1073 最优贸易:https://www.luogu.org/problemnew/show/P1073 题意: 有n个城市,每个城市对A商品有不同的定价,问从1号城市走到n号城市可以最多赚多少差 ...

  4. 洛谷1073 NOIP2009 最优贸易

    题目大意 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双 ...

  5. [luogu1073 Noip2009] 最优贸易 (dp || SPFA+分层图)

    传送门 Description C 国有n 个大城市和m 条道路,每条道路连接这n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这m 条道路中有一部分为单向通行的道路,一部分 为 ...

  6. 洛谷 P1073 最优贸易 解题报告

    P1073 最优贸易 题目描述 \(C\)国有\(n\)个大城市和\(m\)条道路,每条道路连接这\(n\)个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这\(m\)条道路中有一部分 ...

  7. 洛谷P1073 最优贸易 [图论,DP]

    题目传送门 最优贸易 题目描述 C 国有n 个大城市和m 条道路,每条道路连接这n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这m 条道路中有一部分为单向通行的道路,一部分为双向 ...

  8. 【洛谷P1073】[NOIP2009]最优贸易

    最优贸易 题目链接 看题解后感觉分层图好像非常NB巧妙 建三层n个点的图,每层图对应的边相连,权值为0 即从一个城市到另一个城市,不进行交易的收益为0 第一层的点连向第二层对应的点的边权为-w[i], ...

  9. 洛谷P1073 最优贸易==codevs1173 最优贸易

    P1073 最优贸易 题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一 ...

随机推荐

  1. Asp.Net实现在线网站安装(上)

    在很多年前,笔者在使用z-blog搭建个人部落格的时候,最大的感受就是z-blog在线安装功能! 因为在那个时候,以几K每秒的速度上传一个几M或者十几M的压缩包到虚拟主机上,是一个很痛苦的事情.特别是 ...

  2. 【转】怎么用PHP发送HTTP请求(POST请求、GET请求)?

    file_get_contents版本: /** * 发送post请求 * @param string $url 请求地址 * @param array $post_data post键值对数据 * ...

  3. MUI框架-06-静态页制作(图片轮播)

    MUI框架-06-静态页制作(图片轮播) 轮播也是静态,是相对页面交互来说 上一篇介绍了如何设计一个简单的界面,还没有接触过,请先查看: MUI框架-01-介绍-创建项目-简单页面 轮播组件 之前也介 ...

  4. [2014年学习计划之RoR系列] 第二步 – 熟悉Ruby语言 (2/n) Blocks and Iterators (代码块和迭代器)

    [就算没有含金量,也请尊重原创, 转载自我的独立博客http://brucejia.net] Blocks and Iterators (代码块和迭代器) 代码块和迭代器是Ruby语言中比较有特点的东 ...

  5. Excel 操作总结

    1.excel 表格中换行:Alt+Enter; 2.Excel2003以上版本设置下拉菜单     DATA->Data Validation ->Data Validation -&g ...

  6. IDEA创建maven项目时,maven太慢-archetypeCatalog=internal

    创建项目时候加上archetypeCatalog=internal 参数, archetypeCatalog表示插件使用的archetype元数 据,不加这个参数时默认为remote,local,即中 ...

  7. python之路——网络基础

    你现在已经学会了写python代码,假如你写了两个python文件a.py和b.py,分别去运行,你就会发现,这两个python的文件分别运行的很好.但是如果这两个程序之间想要传递一个数据,你要怎么做 ...

  8. SCOM发送邮件通知

    运行方式配置:1. 新建账户--Windows域账户,安全级别较高,将其分发到SCOM管理服务器2. 配置文件--通知账户--将上一步新建的账户添加到该配置文件中的 运行方式账户,管理 所有目标对象 ...

  9. mysql那些招

    show table status mysql官方文档在 http://dev.mysql.com/doc/refman/5.1/en/show-table-status.html 这里的rows行是 ...

  10. kotlin 1.3

    原文:https://www.oschina.net/news/101292/kotlin-1-3-released