【题解】洛谷P1073 [NOIP2009TG] 最优贸易(SPFA+分层图)
次元传送门:洛谷P1073
思路
一开始看题目嗅出了强连通分量的气息 但是嫌长没打 听机房做过的dalao说可以用分层图 从来没用过 就参考题解了解一下
因为每个城市可以走好几次 所以说我们可以在图上随意走动
所以第一层图就建一个边权为0的图 随意走动不影响
考虑在某个点买入水晶球
建立一条有向边到新图上 边权为-w[i] 指向i所能到达的点(第二层图中)
它表示:假如我选择走了这条边,就是我在这个点买了这个水晶球,我不会反悔,并且我接下来考虑在某个点卖它。
考虑在某个点卖出水晶球
从第二层图建立一条有向边到新图中 边权为w[i] 指向i所能到达的点(第三层图中)
它表示:假如我选择走了这条边,就是我在这个点卖了这个水晶球,我不会反悔,并且我接下来考虑走向终点。
现在我们只需要从第一层图走到第二层图再走到第三层图再走到终点即可 而且分层图把所有情况考虑到了
走向终点有两种情况
- 不买卖直接走向终点 在第一层图的终点连一条有向边 边权为0 到最后终点
- 要买卖再走向终点 在第三层图的终点连一条有向边 边权为0 到最后终点
由于有向边的建立,你不能从第二/三层走回第一层图,这保证了你只做一次买卖,而不是无限做买卖,符合了题目的要求(分层图的意义)
而我们最终的答案 就是求从第一层图的1号点 经过三层图走到“最后终点”的最长路
来自你谷dalao的图解:

代码
#include<iostream>
#include<vector>
#include<queue>
using namespace std;
#define maxn 100010
#define INF 1e9+7
struct Edge
{
int v;
int len;
};
int n,m;
bool vis[maxn*+];
int w[maxn],dis[maxn*+];
vector <Edge> G[maxn*+];
void spfa()//常规SPFA
{
for(int i=;i<=n;i++) dis[i]=-INF;
queue <int> q;
q.push();
dis[]=;
vis[]=;
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=;
for(int i=;i<G[u].size();i++)
{
Edge x=G[u][i];
if(dis[x.v]<dis[u]+x.len)
{
dis[x.v]=dis[u]+x.len;
if(!vis[x.v])
{
vis[x.v]=;
q.push(x.v);
}
}
}
}
}
void add(int u,int v)
{
G[u].push_back((Edge){v,});//第一层
G[n+u].push_back((Edge){n+v,});//第二层 用n+1到2*n
G[*n+u].push_back((Edge){*n+v,});//第三层 用2*n+1到3*n
G[u].push_back((Edge){n+v,-w[u]});//从第一层到第二层
G[u+n].push_back((Edge){*n+v,w[u]});//从第二层到第三层
}
int main()
{
cin>>n>>m;
for(int i=;i<=n;i++) cin>>w[i];
for(int i=;i<=m;i++)
{
int x,y,z;
cin>>x>>y>>z;
add(x,y);
if(z==) add(y,x);
}
G[n].push_back((Edge){*n+,});//第一层终点到最后终点
G[*n].push_back((Edge){*n+,});//第三层终点到最后终点
n=*n+;//更改最后终点
spfa();
cout<<dis[n];
}
【题解】洛谷P1073 [NOIP2009TG] 最优贸易(SPFA+分层图)的更多相关文章
- 【洛谷P1073】最优贸易
题目大意:给定一个 N 个点,M 条边(存在反向边)的有向图,点有点权,求一条从 1 到 N 的路径上,任意选出两个点 p,q (p 在前,q在后),两点点权的差值最大. 根据最短路的 dp 思想,可 ...
- 【洛谷 P1073】 最优贸易 (Tarjan缩点+拓扑排序)
题目链接 先\(Tarjan\)缩点,记录每个环内的最大值和最小值. 然后跑拓扑排序,\(Min[u]\)表示到\(u\)的最小值,\(ans[u]\)表示到\(u\)的答案,\(Min\)和\(an ...
- P1073 最优贸易 建立分层图 + spfa
P1073 最优贸易:https://www.luogu.org/problemnew/show/P1073 题意: 有n个城市,每个城市对A商品有不同的定价,问从1号城市走到n号城市可以最多赚多少差 ...
- 洛谷1073 NOIP2009 最优贸易
题目大意 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双 ...
- [luogu1073 Noip2009] 最优贸易 (dp || SPFA+分层图)
传送门 Description C 国有n 个大城市和m 条道路,每条道路连接这n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这m 条道路中有一部分为单向通行的道路,一部分 为 ...
- 洛谷 P1073 最优贸易 解题报告
P1073 最优贸易 题目描述 \(C\)国有\(n\)个大城市和\(m\)条道路,每条道路连接这\(n\)个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这\(m\)条道路中有一部分 ...
- 洛谷P1073 最优贸易 [图论,DP]
题目传送门 最优贸易 题目描述 C 国有n 个大城市和m 条道路,每条道路连接这n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这m 条道路中有一部分为单向通行的道路,一部分为双向 ...
- 【洛谷P1073】[NOIP2009]最优贸易
最优贸易 题目链接 看题解后感觉分层图好像非常NB巧妙 建三层n个点的图,每层图对应的边相连,权值为0 即从一个城市到另一个城市,不进行交易的收益为0 第一层的点连向第二层对应的点的边权为-w[i], ...
- 洛谷P1073 最优贸易==codevs1173 最优贸易
P1073 最优贸易 题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一 ...
随机推荐
- Windows命令行方式执行OracleSQL脚本
调用格式 sqlplus user/pwd@orcl @F:\DB_BAKFile\createpro.sql>>F:\DB_BAKFile\log\createpro.log SQL脚本 ...
- sublime设置不提示更新
sublime 作为轻量级的编辑器非常好用,时不时提醒购买还好 但是经常还提醒更新就不能接受了 解决方法: Just go to Preferences -> Settings-User and ...
- Django实现验证码
简单搞定生成验证码: 1.views.py from io import BytesIO import random from PIL import Image,ImageDraw,ImageFont ...
- 爬虫必备—BeautifulSoup
BeautifulSoup是一个模块,该模块用于接收一个HTML或XML字符串,然后将其进行格式化,之后便可以使用他提供的方法进行快速查找指定元素,从而使得在HTML或XML中查找指定元素变得简单. ...
- D3.js 入门教程
最近需要用到d3, 记录下d3的教程 网上搜了几个关于d3的教程 D3.js 入门教程 http://wiki.jikexueyuan.com/project/d3wiki/author.h ...
- ArcGISPlotSilverlightAPI For WPF
这两天有个需求,在地图上做标绘箭头,效果如下图. Arcgis for WPF 10.2.5.0版本,然而官方文档中没有这种API,自己去写一个呢,又感觉无从下手.无奈去网上搜索了一下,发现一篇好文: ...
- Redis(二):c#连接Redis
1.nuget StackExchange.Redis 2.建立RedisHelper类: public class RedisHelper { /// <summary> /// 连接字 ...
- C# 平台问题
最近在C#项目中嵌入一个视频软件Ffplayer,出现报错现象,提示平台开发视频.dll文件的兼容性和加载格式不正确的问题.最终查看是由于项目平台选择的是Any CPU和X86的引起的.目标平台有什么 ...
- 一、C#简单读写
using System.IO; static string configFileName = "config.json"; //不存在就直接新建文件夹 public static ...
- Sharepoint配置Projectserver
1 需要创建一个project server application 程序. 2 创建一个内容数据库,这个比较简单,微软文档中如下表述: 3 创建一个Project Web App 需要用命 ...