不错的分块题

gcd和xor其实并没有联系

这里,xor的按位性质没有半点卵用

gcd的性质却很关键:

一个数组,前缀gcd最多logn个不同的

gcd不太多,(暴力的基础)

所有考虑分块。

分块,每个块维护:每个点的块内前缀gcd,块内前缀xor,每个块保存前缀所有块的gcd

修改暴力修改涉及到的信息

查询,挨个找块,lasgcd前面几个块的gcd,lasxor前面几个块的xor,

如果i块的前缀gcd==lasgcd,说明整个块内的gcd都是lasgcd。有nd=X/lasgcd^lasxor。看这个块内前缀xor有没有nd这个数。二分。复杂度sqrt(n)*logn

否则暴力进入块内寻找。gcd只有logn个不同的,所以这里复杂度总共sqrt(n)*logn

总复杂度O(nsqrt(n)logn)

随机数据的话,远远不到上界。

[HEOI2015]公约数数列的更多相关文章

  1. 【BZOJ4028】[HEOI2015]公约数数列(分块)

    [BZOJ4028][HEOI2015]公约数数列(分块) 题面 BZOJ 洛谷 题解 看一道题目就不会做系列 首先\(gcd\)最多只会有\(log\)种取值,所以我们可以暴力枚举出所有可能的\(g ...

  2. BZOJ 4028: [HEOI2015]公约数数列 【分块 + 前缀GCD】

    任意门:https://www.lydsy.com/JudgeOnline/problem.php?id=4028 4028: [HEOI2015]公约数数列 Time Limit: 10 Sec   ...

  3. BZOJ 4028: [HEOI2015]公约数数列 分块

    4028: [HEOI2015]公约数数列 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4028 Description 设计一个数据结 ...

  4. 【BZOJ4028】[HEOI2015]公约数数列 分块

    [BZOJ4028][HEOI2015]公约数数列 Description 设计一个数据结构. 给定一个正整数数列 a_0, a_1, ..., a_{n - 1},你需要支持以下两种操作: 1. M ...

  5. bzoj4028: [HEOI2015]公约数数列

    Description 设计一个数据结构. 给定一个正整数数列 a_0, a_1, ..., a_{n - 1},你需要支持以下两种操作: 1. MODIFY id x: 将 a_{id} 修改为 x ...

  6. 洛谷 P4108 / loj 2119 [HEOI2015] 公约数数列 题解【分块】

    看样子分块题应该做的还不够. 题目描述 设计一个数据结构. 给定一个正整数数列 \(a_0, a_1, \ldots , a_{n-1}\),你需要支持以下两种操作: MODIFY id x: 将 \ ...

  7. luogu P4108 [HEOI2015]公约数数列——solution

    -by luogu 不会啊.... 然后%了一发题解, 关键是 考虑序列{$a_n$}的前缀gcd序列, 它是单调不升的,且最多只会改变$log_2N$次,因为每变一次至少除2 于是,当我们询问x时: ...

  8. bzoj 4028 : [HEOI2015]公约数数列

    之前看了好几次都没什么思路,今天下定决心把这题切了. 观察到$0-x$的gcd最多变化log次,因为它每次变化一定至少要去掉一个质因子,所以我们可以枚举gcd. 因为数据范围比较小,所以想到了分块. ...

  9. [BZOJ4028][HEOI2015]公约数数列(分块)

    先发掘性质: 1.xor和gcd均满足交换律与结合率. 2.前缀gcd最多只有O(log)个. 但并没有什么数据结构能同时利用这两个性质,结合Q=10000,考虑分块. 对每块记录这几个信息: 1.块 ...

随机推荐

  1. CentOS 7.2二进制安装mysql-5.7.19

    官方文档地址:https://dev.mysql.com/doc/refman/5.7/en/binary-installation.html 开始安装 1.下载mysql二进制包 # cd /usr ...

  2. Lua学习笔记(5): 表

    表的初始化方式 表的索引类型一般有两种,一种是通过标识符访问,一种是通过数字访问 --通过标识符访问的表的初始化 table1 = {key_1 = "haha", key_2 = ...

  3. ArrayList 源码分析 -- 扩容问题及序列化问题

    目录 一.前言二.ArrayList 的继承与实现关系    2.1 ArrayList.java    2.2 抽象类AbstractList.java    2.3 接口List.java     ...

  4. vps搭建个人网盘不二之选—kodexplorer介绍,包含安装步骤

    之前给大家介绍过seafile.h5ai等网盘系统,今天给大家介绍下kodexplorer网盘系统.Kodexplorer,也叫芒果云.可道云.kodcloud,总之名字改了不少.但其本身作为一个网盘 ...

  5. centos上搭建git服务--3

    前言:当我们想要实现几个小伙伴合作开发同一个项目,或者建立一个资源分享平台的时候,GIT就是一个很好的选择.当然,既然是一个共有平台,那么把这个平台放到个人计算机上明显是不合适的,因此就要在服务器上搭 ...

  6. 关于requestanimationframe

    首先字面理解,请求动画框架, 用法: var nextFrame = (function() { return window.requestAnimationFrame || window.webki ...

  7. 随机生成四则运算式2-NEW+PSP项目计划(补充没有真分数的情况)

    PS:这是昨天编写的随机生成四则运算式2的代码:http://www.cnblogs.com/wsqJohn/p/5264448.html 做了一些改进. 补:在上一次的运行中并没有加入真分数参与的运 ...

  8. Linux 安装php扩展 swoole

    swoole是一个PHP的异步.并行.高性能网络通信引擎,使用纯C语言编写,提供了PHP语言的异步多线程服务器,异步TCP/UDP网络客户端,异步MySQL,异步Redis,数据库连接池,AsyncT ...

  9. 项目Beta冲刺(团队)第一天

    1.今天解决的进度 成员 进度 陈家权 回复界面设计,由于成员变动加上和其他成员距离较远,服务器404 赖晓连 改进Alpha版本页面没能及时更新的问题 雷晶 获取提问问题时间更新到数据库 林巧娜 今 ...

  10. HDU 5646 DZY Loves Partition

    题目链接: hdu:http://acm.hdu.edu.cn/showproblem.php?pid=5646 bc:http://bestcoder.hdu.edu.cn/contests/con ...