Tensor是Pytorch的一个完美组件(可以生成高维数组),但是要构建神经网络还是远远不够的,我们需要能够计算图的Tensor,那就是Variable。Variable是对Tensor的一个封装,操作和Tensor是一样的,但是每个Variable都有三个属性,Varibale的Tensor本身的.data,对应Tensor的梯度.grad,以及这个Variable是通过什么方式得到的.grad_fn。

# 通过一下方式导入Variable

from torch.autograd import Variable

import torch

x_tensor = torch.randn(10,5)

y_tensor = torch.randn(10,5)

#将tensor转换成Variable

x = Variable(x_tensor,requires_grad=True) #Varibale 默认时不要求梯度的,如果要求梯度,需要说明

y = Variable(y_tensor,requires_grad=True)

z = torch.sum(x + y)

print(z.data)

print(z.grad_fn)

z.backward()

print(x.grad)

print(y.grad)

tensor(7.0406)
<SumBackward0 object at 0x000002A557C47908>
tensor([[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.]])
tensor([[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.]])
上面打印出了z的Tensor数值,以及通过.grad_fn得到其是通过sum这种方式得到的,通过.grad得到了x和y的梯度

#构建一个y = x^2 函数 求x = 2 的导数

import numpy as np

import torch

from torch.autograd import Variable

# 1、画出函数图像

import matplotlib.pyplot as plt

x = np.arange(-3,3.01,0.1)

y = x**2

plt.plot(x,y)

plt.plot(2,4,'ro')

plt.show()

#定义点variable类型的x = 2

x = Variable(torch.FloatTensor([2]),requires_grad=True)

y = x ** 2

y.backward()

print(x.grad)





Pytorch之认识Variable的更多相关文章

  1. 二、PyTorch 入门实战—Variable(转)

    目录 一.概念 二.Variable的创建和使用 三.标量求导计算图 四.矩阵求导计算图 五.Variable放到GPU上执行 六.Variable转Numpy与Numpy转Variable 七.Va ...

  2. pytorch 中的Variable一般常用的使用方法

    Variable一般的初始化方法,默认是不求梯度的 import torch from torch.autograd import Variable x_tensor = torch.randn(2, ...

  3. Pytorch中的variable, tensor与numpy相互转化的方法

    1.将numpy矩阵转换为Tensor张量 sub_ts = torch.from_numpy(sub_img) #sub_img为numpy类型 2.将Tensor张量转化为numpy矩阵 sub_ ...

  4. 莫烦pytorch学习笔记(二)——variable

    .简介 torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现 Variable和tensor的区别和联系 Variable是篮子, ...

  5. pytorch .detach() .detach_() 和 .data用于切断反向传播

    参考:https://pytorch-cn.readthedocs.io/zh/latest/package_references/torch-autograd/#detachsource 当我们再训 ...

  6. (转载)PyTorch代码规范最佳实践和样式指南

    A PyTorch Tools, best practices & Styleguide 中文版:PyTorch代码规范最佳实践和样式指南 This is not an official st ...

  7. PyTorch 学习

    PyTorch torch.autograd模块 深度学习的算法本质上是通过反向传播求导数, PyTorch的autograd模块实现了此功能, 在Tensor上的所有操作, autograd都会为它 ...

  8. PyTorch上路

    PyTorch torch.autograd模块 深度学习的算法本质上是通过反向传播求导数, PyTorch的autograd模块实现了此功能, 在Tensor上的所有操作, autograd都会为它 ...

  9. [源码解析] 深度学习流水线并行 GPipe(3) ----重计算

    [源码解析] 深度学习流水线并行 GPipe(3) ----重计算 目录 [源码解析] 深度学习流水线并行 GPipe(3) ----重计算 0x00 摘要 0x01 概述 1.1 前文回顾 1.2 ...

随机推荐

  1. C#网络编程(一)基础篇

    简介: C#网络编程API包含在System.Net和System.Net.Sockets命名空间下,大部分网络操作都可以在其中找到相应的类来实现:包括Socket的创建和连接,网络流收发方法的封装, ...

  2. LAMP配置NFS页面共享,autofs实现挂载,DNS实现名称解析,纯手动操作

    0.实验架构: 共6台服务器 分工如下: 服务器 职责 IP地址 Centos版本 描述 A DNS 172.18.7.70 7 B Apache 172.18.7.71 7 httpd+php-fp ...

  3. mac本机svn命令使用

    公司项目用到svn,之前做版本管理用的是git. 现在对svn回顾学习了一下. 这里有一篇很好的入门教程 http://www.rubyrobot.org/tutorial/subversion-wi ...

  4. 如何实现本机Windows连接虚拟机中的CentOS

    1.确定CentOS的IP地址,命令为 ifconfig,由此可知,LinuxIP地址为 192.168.85.128 2.WIndows的IP地址为192.168.16.1, 3.保证CentOS和 ...

  5. antlr-2.7.6.jar的作用

    项目中没有添加antlr-2.7.6.jar,hibernate不会执行hql语句 并且会报NoClassDefFoundError: antlr/ANTLRException错误

  6. vue实现点击目标元素外页面的其他地方隐藏弹窗。

    方法: 步骤1:给页面最外出的元素div加点击事件:@click=“popShow = false”. 步骤2:给点击目标元素加点击事件:@click=“popShow = true”. 备注:pop ...

  7. CF 553E Kyoya and Train

    题目分析 期望\(\text{dp}\). 设\(f_{i,j}\)表示在第\(j\)个时刻从\(i\)点出发,到达终点的期望花费. 有转移方程: \[ f_{x,t}=\min_{(x,y)\in ...

  8. Python ,pickle

    @Python pickle模块学习   pickle提供了一个简单的持久化功能.可以将对象以文件的形式存放在磁盘上. ---------------------------------------- ...

  9. 安装chrome jsonView插件

    1.打开 https://github.com : 2.搜索 jsonView 链接:https://github.com/search?utf8=%E2%9C%93&q=jsonview: ...

  10. 【[NOI2018]屠龙勇士】

    发现好像都是化掉系数之后套上\(ExCrt\)的板子 这好像是一个真正的扩展扩展中国剩余定理 我们要处理的方程是这样的形式 \[c_ix\equiv b_i(mod\ a_i)\] 其中\(c\)用一 ...