金融量化分析【day110】:Pandas的Series对象
一、pandas简介安装
pandas是一个强大的python数据分析的工具包
pandsa是基于NumPy构建的
1、pandas的主要功能
1、具备对其功能的数据结构DataFrame、Series

2、集成时间序列功能
3、提供丰富的数学运算和操作

4、灵活处理缺失数据
2、安装方法
pip install pandas
3、引用方法
import pandas as pd
二、Series对象
1、pandas的Series对象是一个带索引数据构成的一维数组,可以用一个数组创建Series对象
import numpy as np
import pandas as pd
data = pd.Series([0.25,0.5,0.75,10])
data


2、Series是通用NumPy数组
data = pd.Series([0.25,0.5,0.75,10],index=['a','b','c','d'])

data = pd.Series([0.25,0.5,0.75,10],index=['2','5','3','7'])

3、Series是特殊的字典
area_dict = {'California': 423967, 'Texas': 695662, 'New York': 141297,
'Florida': 170312, 'Illinois': 149995}
area = pd.Series(area_dict)
area

三、Series数据对齐
1、pandas在运算时,会按索引进行对齐然后计算,如果存在不同的索引,则结果的索引是两个操作数索引的并集
1、sr1+sr2


2、sr1+sr3



2、如何在两个Series对象相加时将缺失值设置为0?
三、缺失数据
缺失数据:使用NaN(Not a Number)来表示缺失数据,其值等于np.nan
内置的None值也会被当做NaN处理
1、发现缺失数据
1、data.isnull()创建一个布尔类型的掩码标签缺失值
import numpy as np
import pandas as pd
data = pd.Series([1, np.nan, 'hello', None])
data.isnull()

1、data[data.notnull()与data.isnull()操作相反
data[data.notnull()]

2、剔除缺失数据
1、dropna()返回一个剔除缺失值的数据(剔除任何包含缺失值的整行数据)
df3.dropna()

2、dropna(how='any')返回一个剔除缺失值的数据(会剔除任何包含缺失值的整列数据)
df.dropna(axis='columns', how='all')


3、dropna(how='any')返回一个剔除缺失值的数据(只要有缺失值就剔除整行或整列)
df2.dropna(how='any')

df2[df2['close'].notnull()]

4、dropna(how='any')返回一个剔除缺失值的数据(行或列中非缺失值的最小数量)
df.dropna(axis='rows', thresh=3)

第一行和第三行被剔除了,因为他们只包含两个非缺失值
3、填充缺失数据
有时候你可你可能并不想移除缺失值,而是想把他们替换成有效的数值,有效的值可能想0,1,2那样单独的值,也可能
是经过填充(imputation)或转换(interpolation)得到的,虽然你可以通过isnull方法建立掩码来填充缺失值,但是Pandas
为此专门提供了一个fillna(0)方法,他将返回填充缺失值后的数组副本
data = pd.Series([1, np.nan, 2, None, 3], index=list('abcde'))
data

1、data.fillna(0)单独的值填充缺失值
data.fillna(0)

2、method='ffill' 可以用缺失值前面的有效值来从前往后填充
data.fillna(method='ffill')

3、method='bfill' 也可以用缺失值的有效值从后向前填充
data.fillna(method='bfill')

4、DataFrame的操作方法与Series类似,只是在填充时候需要设置坐标轴参数axis
df.fillna(method='ffill', axis=1)

需要注意的是,假如从前往后填充式,需要填充的却是值前面没有值,那么他就仍然是缺失值
4、对不同趋势值的转换规则

金融量化分析【day110】:Pandas的Series对象的更多相关文章
- 金融量化分析-python量化分析系列之---使用python获取股票历史数据和实时分笔数据
财经数据接口包tushare的使用(一) Tushare是一款开源免费的金融数据接口包,可以用于获取股票的历史数据.年度季度报表数据.实时分笔数据.历史分笔数据,本文对tushare的用法,已经存在的 ...
- day31 堡垒机尾声 + Python与金融量化分析(一)
堡垒机尾声: 代码案例:https://github.com/liyongsan/git_class/tree/master/day31 课堂笔记:file send: 1.选择本地文件 2.远程路径 ...
- pandas中Series对象下的str所拥有的方法(df["xx"].str)
在使用pandas的时候,经常要对DataFrame的某一列进行操作,一般都会使用df["xx"].str下的方法,但是都有哪些方法呢?我们下面来罗列并演示一下.既然是df[&qu ...
- 金融量化分析【day110】:金融基础知识
一.股票 股票: 股票是股份公司发给出资人的一种凭证,股票的持有者就是股份公司的股东. 股票的面值与市值 面值表示票面金额 市值表示市场价值 上市/IPO: 企业通过证券交易所公开向社会增发股票以募集 ...
- day32 Python与金融量化分析(二)
第一部分:金融与量化投资 股票: 股票是股份公司发给出资人的一种凭证,股票的持有者就是股份公司的股东. 股票的面值与市值 面值表示票面金额 市值表示市场价值 上市/IPO: 企业通过证券交易所公开向社 ...
- 重拾Python(3):Pandas之Series对象的使用
Pandas是Python下最强大的数据分析和探索库,是基于Numpy库构建的,支持类似SQL的结构化数据的增.删.查.改,具有丰富的数据处理函数.Pandas有两大数据结构:Series和DataF ...
- Python与金融量化分析----金融与量化投资
一:金融了解 金融:就是对现有资源进行重新的整合之后,进行价值和利润的等效流通. 金融工具: 股票 期货 黄金 外汇 基金 ............. 股票: 股票是股份公司发给出资人多的一种凭证,股 ...
- 又见Python<3>:Pandas之Series对象的使用
Pandas是Python下最强大的数据分析和探索库,是基于Numpy库构建的,支持类似SQL的结构化数据的增.删.查.改,具有丰富的数据处理函数.Pandas有两大数据结构:Series和DataF ...
- 数据分析之pandas库--series对象
1.Series属性及方法 Series是Pandas中最基本的对象,Series类似一种一维数组. 1.生成对象.创建索引并赋值. s1=pd.Series() 2.查看索引和值. s1=Serie ...
随机推荐
- SQLServer之创建分区视图
分区视图定义 分区视图是通过对成员表使用 UNION ALL 所定义的视图,这些成员表的结构相同,但作为多个表分别存储在同一个 SQL Server实例中,或存储在称为联合数据库服务器的自主 SQL ...
- 取消导航栏navigationBar的半透明/毛玻璃效果
iOS 7.0以上的系统,导航栏默认有毛玻璃效果,遮住了颜色 原因是7.0以上的系统,导航栏默认有毛玻璃效果,遮住了颜色,取消掉这个效果就行了. if( ([[[UIDevice currentDev ...
- Spring系列-SpringBoot 学习路径
学习spring boot 已经有很长一段时间,与其说学习,不如说是使用. 在过去的很长时间我一直奉行实用主义,任何技术我都是在应用中使用,很少是因为为了学习而学习. 当然,有那么几次心血来潮,去专门 ...
- jQuery each、节点操作、动画演示、尺寸操作、扩展方法
一.each 1.方式一:$.each(数组或者自定义对象,function(i,j){console.log(i,j)}) $.each(li,function(i,j){ console.log( ...
- 基于element ui的级联选择器组件实现的分类后台接口
今天在做资产管理系统的时候遇到一个分类的级联选择器,前端是用的element的组件,需要后台提供接口支持. 这个组件需要传入的数据结构大概是这样的,详细的可参考官方案例: [{ value: ...
- KVM的安装使用
1.包的安装 2.虚拟机的创建安装 3.安装基本参数的说明 4.常用操作 一.包的安装 1.#yum install -y kvm qemu-kvm libvirt virt-install brid ...
- Java 控制语句
Java 控制语句
- 使用 Python 爬取网页数据
1. 使用 urllib.request 获取网页 urllib 是 Python 內建的 HTTP 库, 使用 urllib 可以只需要很简单的步骤就能高效采集数据; 配合 Beautiful 等 ...
- c指针作业(第一次)
1. 数据类型的本质是什么? (从编译器的角度考虑) 数据类型可理解为创建变量的模具:是固定内存大小的别名 数据类型的作用:编译器预算对象(变量)分配的内存空间大小 注意:数据类型只是模具,编译器并没 ...
- MD 的常用语法格式
参考资料:MarkDown 语言常用语法 注意:vscode 中,可以使用 ctrl + shift + v 进行预览: 一.标题 一般使用 # 来进行层级标识.共 6 个层级,再多不识别. # = ...