题意

题目链接

Sol

这题也比较休闲。

直接把\(X_{i+1} = (aX_i + b) \pmod P\)展开,推到最后会得到这么个玩意儿

\[a^{i-1} (x_1 + \frac{b}{a-1}) - \frac{b}{a-1} \equiv T \pmod P
\]

然后再合并一下就可以大力BSGS了。

有些细节需要特判一下

#include<bits/stdc++.h>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
#define int long long
#define LL long long
#define ull unsigned long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 1e6 + 10, INF = 1e9 + 10;;
int mod;
const double eps = 1e-9;
template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename A> inline void debug(A a){cout << a << '\n';}
template <typename A> inline LL sqr(A x){return 1ll * x * x;}
template <typename A, typename B> inline LL fp(A a, B p, int md = mod) {int b = 1;while(p) {if(p & 1) b = mul(b, a);a = mul(a, a); p >>= 1;}return b;}
template <typename A> A inv(A x) {return fp(x, mod - 2);}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int a, b, X1, End;
//x_{i+1} = (aX_i + b) % P
//a^ans = x % p
//a^{i * k - j} = x % p
//a^{i * k} = x * a^j % p
map<int, int> mp; /*
int Query(int a, int x, int p) {
if(__gcd(a, p) != 1) return -2;
int base = 1;
for(int i = 0; i <= p; i++) {
if(base % p == x) return i;
mul2(base, a);
}
return -2;
}
*/ int Query(int a, int x, int p) {
if(__gcd(a, p) != 1) return -2;
mp.clear(); int block = ceil(sqrt(p)), base = fp(a, block);
for(int i = 0, cur = x; i <= block; i++, mul2(cur, a)) mp[cur] = i;
for(int i = 1, cur = base; i <= block; i++, mul2(cur, base))
if(mp[cur])
return i * block - mp[cur];
return -2;
} void solve() {
mod = read(); a = read(); b = read(); X1 = read(); End = read();
if(X1 == End) {puts("1"); return ;}
if(!a) {
if(!b) {puts(End == X1 ? "1" : "-1");return ;}
else {puts(End == b ? "2" : "-1");return ;}
}
if(a == 1) {
if(!b) {puts(End == X1 ? "1" : "-1");return ;}
else {
//int tmp = add(End, -X1 + mod) % b;
//cout << tmp << '\n';
cout << mul(add(End, -X1), inv(b)) + 1 << '\n';
return ;
}
}
int tmp = mul(b, inv(a - 1));
add2(X1, tmp); add2(End, tmp);
mul2(End, inv(X1));
cout << Query(a, End, mod) + 1 << '\n';
}
signed main() {
//freopen("a.in", "r", stdin);
for(int T = read(); T--; solve());
return 0;
}

BZOJ3122: [Sdoi2013]随机数生成器(BSGS)的更多相关文章

  1. [bzoj3122][SDOI2013]随机数生成器 ——BSGS,数列

    题目大意 给定递推序列: F[i] = a*F[i-1] + b (mod c) 求一个最小的i使得F[i] == t 题解 我们首先要化简这个数列,作为一个学渣,我查阅了一些资料: http://d ...

  2. bzoj3122 [SDOI2013]随机数生成器

    bzoj3122 [SDOI2013]随机数生成器 给定一个递推式, \(X_i=(aX_{i-1}+b)\mod P\) 求满足 \(X_k=t\) 的最小整数解,无解输出 \(-1\) \(0\l ...

  3. 【BZOJ3122】[Sdoi2013]随机数生成器 BSGS+exgcd+特判

    [BZOJ3122][Sdoi2013]随机数生成器 Description Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数.   接下来T行,每行有五个整数p,a,b, ...

  4. 【BZOJ-3122】随机数生成器 BSGS

    3122: [Sdoi2013]随机数生成器 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1362  Solved: 531[Submit][Sta ...

  5. 【BZOJ 3122】 [Sdoi2013]随机数生成器 (BSGS)

    3122: [Sdoi2013]随机数生成器 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1442  Solved: 552 Description ...

  6. 【bzoj3122】[Sdoi2013]随机数生成器 BSGS思想的利用

    题目描述 给出递推公式 $x_{i+1}=(ax_i+b)\mod p$ 中的 $p$.$a$.$b$.$x_1$ ,其中 $p$ 是质数.输入 $t$ ,求最小的 $n$ ,使得 $x_n=t$ . ...

  7. BZOJ3122 [Sdoi2013]随机数生成器 【BSGS】

    题目 输入格式 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数. 接下来T行,每行有五个整数p,a,b,X1,t,表示一组数据.保证X1和t都是合法的页码. 注意:P一定为质数 输出 ...

  8. bzoj千题计划259:bzoj3122: [Sdoi2013]随机数生成器

    http://www.lydsy.com/JudgeOnline/problem.php?id=3122 等比数列求和公式+BSGS #include<map> #include<c ...

  9. bzoj 3122 : [Sdoi2013]随机数生成器 BSGS

    BSGS算法 转自:http://blog.csdn.net/clove_unique 问题 给定a,b,p,求最小的非负整数x,满足$a^x≡b(mod \ p)$ 题解 这就是经典的BSGS算法, ...

随机推荐

  1. libguestfs手册(3): virt命令

    guestmount root# guestmount -a ubuntutest1.img -m /dev/sda1 ubuntutestp1 root# cd ubuntutestp1/root: ...

  2. 安卓开发学习笔记(四):Android Stuidio无法实现隐式Intent是为什么?

    一.首先检查我们的代码: FirstActivity.java(主活动程序当中的代码):Button3监听器后面的代码就是我们隐式Intent的业务逻辑所在了,大家可以往下面看看,大概在代码的第57行 ...

  3. kali linux学习笔记(四) : 网络端口大全介绍

    端口大全介绍 2端口:管理实用程序 3端口:压缩进程 5端口:远程作业登录 7端口:回显 9端口:丢弃 11端口:在线用户 13端口:时间 17端口:每日引用 18端口:消息发送协议 19端口:字符发 ...

  4. WordPress独立下载页面与演示插件:xydown

    我的博客是个资源分享的网站,所以需要提供下载,之前一直是在内容里直接添加个下载链接,感觉不是很美观,而且也麻烦,所以今天找了下看看有没有可以用的下载插件 xydown,这是一款可以独立下载页面与演示的 ...

  5. Node.js(day4)

    一.一些小问题 1.文件操作路径和模块读取路径的问题 我们使用fs核心模块系统进行文件操作时一般这样书写路径 fs.readFile('./views/index.html');//读取views目录 ...

  6. Kali学习笔记42:SQL手工注入(4)

    前三篇文章都是在讲发现SQL注入漏洞 如何查询得到所有的信息 那么另一条思路还未尝试过:能否修改数据? 例如这样: '; update users set user='yiqing' where us ...

  7. [Swift]LeetCode69. x 的平方根 | Sqrt(x)

    Implement int sqrt(int x). Compute and return the square root of x, where x is guaranteed to be a no ...

  8. [Swift]LeetCode417. 太平洋大西洋水流问题 | Pacific Atlantic Water Flow

    Given an m x n matrix of non-negative integers representing the height of each unit cell in a contin ...

  9. [Swift]LeetCode953. 验证外星语词典 | Verifying an Alien Dictionary

    In an alien language, surprisingly they also use english lowercase letters, but possibly in a differ ...

  10. TCP的三次握手与四次挥手(个人总结)

    序列号seq:占4个字节,用来标记数据段的顺序,TCP把连接中发送的所有数据字节都编上一个序号,第一个字节的编号由本地随机产生:给字节编上序号后,就给每一个报文段指派一个序号:序列号seq就是这个报文 ...