Description

每天,农夫John需要经过一些道路去检查牛棚N里面的牛.

农场上有M(1<=M<=50,000)条双向泥土道路,编号为1..M. 道路i连接牛棚P1_i和P2_i (1 <= P1_i <= N; 1 <= P2_i<= N).

John需要T_i (1 <= T_i <= 1,000,000)时间单位用道路i从P1_i走到P2_i或者从P2_i 走到P1_i

他想更新一些路经来减少每天花在路上的时间.具体地说,他想更新K (1 <= K <= 20)条路经,将它们所须时间减为0.

帮助FJ选择哪些路经需要更新使得从1到N的时间尽量少.

Input

* 第一行: 三个空格分开的数: N, M, 和 K * 第2..M+1行: 第i+1行有三个空格分开的数:P1_i, P2_i, 和 T_i

Output

* 第一行: 更新最多K条路经后的最短路经长度.

Sample Input

4 4 1
1 2 10
2 4 10
1 3 1
3 4 100

Sample Output

1

HINT

K是1; 更新道路3->4使得从3到4的时间由100减少到0. 最新最短路经是1->3->4,总用时为1单位. N<=10000

————————————————————————————————

感觉还是有必要发一篇题解吧 因为网上的代码都好复杂QAQ——其实只需要五六十行的样子

我们只要在正常的dijkstra上把数组d【i】(表示距离)转换成d【i】【j】表示从1走到i 在使用了 j 次变 0 技能后的最短路

之后的操作就和正常的dijkstra一样了 每次取最近的出堆更新其他结点就好了 等到 点n 出堆的时候就是答案了

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define LL long long
using namespace std;
const int N=,inf=0x7f7f7f7f;
int read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
int n,m,k;
int d[N][];
struct node{
int d,h,pos;
bool operator <(const node& x)const{return x.d<d;}
};
priority_queue<node>q;
int first[N],cnt;
struct pos{int to,next,w;}e[*N];
void ins(int a,int b,int w){e[++cnt]=(pos){b,first[a],w}; first[a]=cnt;}
void insert(int a,int b,int w){ins(a,b,w); ins(b,a,w);}
int dj(){
memset(d,0x7f,sizeof(d));
for(int i=;i<=k;i++) d[][i]=;
q.push((node){,,});
while(!q.empty()){
node p=q.top(); q.pop();
if(d[p.pos][p.h]!=p.d) continue;
if(p.pos==n) return p.d;
int x=p.pos,h=p.h;
for(int i=first[x];i;i=e[i].next){
int now=e[i].to;
if(d[now][h]>d[x][h]+e[i].w) d[now][h]=d[x][h]+e[i].w,q.push((node){d[now][h],h,now});
if(h<k&&d[now][h+]>d[x][h]) d[now][h+]=d[x][h],q.push((node){d[now][h+],h+,now});
}
}
return d[n][k];
}
int main()
{
int x,y,v;
n=read(); m=read(); k=read();
for(int i=;i<=m;i++) x=read(),y=read(),v=read(),insert(x,y,v);
printf("%d\n",dj());
return ;
}
 

bzoj 1579: [Usaco2009 Feb]Revamping Trails 道路升级——分层图+dijkstra的更多相关文章

  1. bzoj 1579: [Usaco2009 Feb]Revamping Trails 道路升级 -- 分层图最短路

    1579: [Usaco2009 Feb]Revamping Trails 道路升级 Time Limit: 10 Sec  Memory Limit: 64 MB Description 每天,农夫 ...

  2. BZOJ 1579: [Usaco2009 Feb]Revamping Trails 道路升级 分层图最短路 + Dijkstra

    Description 每天,农夫John需要经过一些道路去检查牛棚N里面的牛. 农场上有M(1<=M<=50,000)条双向泥土道路,编号为1..M. 道路i连接牛棚P1_i和P2_i ...

  3. Bzoj 1579: [Usaco2009 Feb]Revamping Trails 道路升级 dijkstra,堆,分层图

    1579: [Usaco2009 Feb]Revamping Trails 道路升级 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1573  Solv ...

  4. BZOJ 1579: [Usaco2009 Feb]Revamping Trails 道路升级( 最短路 )

    最短路...多加一维表示更新了多少条路 -------------------------------------------------------------------------------- ...

  5. bzoj 1579: [Usaco2009 Feb]Revamping Trails 道路升级 优先队列+dij

    1579: [Usaco2009 Feb]Revamping Trails 道路升级 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1768  Solv ...

  6. 【bzoj1579】[Usaco2009 Feb]Revamping Trails 道路升级 分层图最短路

    题目描述 每天,农夫John需要经过一些道路去检查牛棚N里面的牛. 农场上有M(1<=M<=50,000)条双向泥土道路,编号为1..M. 道路i连接牛棚P1_i和P2_i (1 < ...

  7. BZOJ 1579 [Usaco2009 Feb]Revamping Trails 道路升级:dijkstra 分层图【将k条边改为0】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1579 题意: 给你一个无向图,n个点,m条边,每条边有边权w[i]. 你可以将其中的k(k ...

  8. bzoj 1579: [Usaco2009 Feb]Revamping Trails 道路升级【分层图+spfa】

    至死不用dijskstra系列2333,洛谷上T了一个点,开了O2才过 基本想法是建立分层图,就是建k+1层原图,然后相邻两层之间把原图的边在上一层的起点与下一层的终点连起来,边权为0,表示免了这条边 ...

  9. BZOJ 1579 [Usaco2009 Feb]Revamping Trails 道路升级

    堆优化的dijkstra. 把一个点拆成k个. 日常空间要开炸一次.. //Twenty #include<cstdio> #include<cstring> #include ...

随机推荐

  1. tcl之控制流-foreach

  2. LAMP架构的搭建

    什么是LAMP架构? L : Linux,2.6.18-308.el5(redhat5.8) A :Apache,httpd 2.4.4 M :  mysql-5.5.28  P : php-5.4. ...

  3. POJ:2785-4 Values whose Sum is 0(双向搜索)

    4 Values whose Sum is 0 Time Limit: 15000MS Memory Limit: 228000K Total Submissions: 26974 Accepted: ...

  4. Apache 设置二级域名

    开启重写模块 LoadModule rewrite_module modules/mod_rewrite.so 编辑配置 NameVirtualHost *:80 <VirtualHost *: ...

  5. python基础之继承派生、组合、接口和抽象类

    类的继承与派生 经典类和新式类 在python3中,所有类默认继承object,但凡是继承了object类的子类,以及该子类的子类,都称为新式类(在python3中所有的类都是新式类) 没有继承obj ...

  6. android 事件传递机制

    有三个方法: dispatchTouchEvent onInterceptTouchEvent onTouchEvent 首先:A的dispatchTouchEvent-A的onInterceptTo ...

  7. java从数据库读取菜单,递归生成菜单树

    首先看一下菜单的样子 根据这个样子我们定义菜单类 public class Menu { // 菜单id private String id; // 菜单名称 private String name; ...

  8. spring整合redis缓存,以注解(@Cacheable、@CachePut、@CacheEvict)形式使用

    maven项目中在pom.xml中依赖2个jar包,其他的spring的jar包省略: <dependency> <groupId>redis.clients</grou ...

  9. Python 协程与事件循环

    Table of Contents 前言 协程 async & await 事件循环 asyncio 的事件循环 结语 参考链接 前言 Python 标准库 asyncio 是我目前接触过的最 ...

  10. eclipse把jar包引入项目的两种方法

    方法一: build path引入jar包 方法二: 把jar包放入lib文件夹 区别: 把jar包放入lib文件夹,以后把程序发给别人,别人可以直接运行而无需再自己添加jar包 总结: 1.有时即使 ...