bzoj 1579: [Usaco2009 Feb]Revamping Trails 道路升级——分层图+dijkstra
Description
每天,农夫John需要经过一些道路去检查牛棚N里面的牛.
农场上有M(1<=M<=50,000)条双向泥土道路,编号为1..M. 道路i连接牛棚P1_i和P2_i (1 <= P1_i <= N; 1 <= P2_i<= N).
John需要T_i (1 <= T_i <= 1,000,000)时间单位用道路i从P1_i走到P2_i或者从P2_i 走到P1_i
他想更新一些路经来减少每天花在路上的时间.具体地说,他想更新K (1 <= K <= 20)条路经,将它们所须时间减为0.
帮助FJ选择哪些路经需要更新使得从1到N的时间尽量少.
Input
* 第一行: 三个空格分开的数: N, M, 和 K * 第2..M+1行: 第i+1行有三个空格分开的数:P1_i, P2_i, 和 T_i
Output
* 第一行: 更新最多K条路经后的最短路经长度.
Sample Input
1 2 10
2 4 10
1 3 1
3 4 100
Sample Output
HINT
K是1; 更新道路3->4使得从3到4的时间由100减少到0. 最新最短路经是1->3->4,总用时为1单位. N<=10000
————————————————————————————————
感觉还是有必要发一篇题解吧 因为网上的代码都好复杂QAQ——其实只需要五六十行的样子
我们只要在正常的dijkstra上把数组d【i】(表示距离)转换成d【i】【j】表示从1走到i 在使用了 j 次变 0 技能后的最短路
之后的操作就和正常的dijkstra一样了 每次取最近的出堆更新其他结点就好了 等到 点n 出堆的时候就是答案了
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define LL long long
using namespace std;
const int N=,inf=0x7f7f7f7f;
int read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
int n,m,k;
int d[N][];
struct node{
int d,h,pos;
bool operator <(const node& x)const{return x.d<d;}
};
priority_queue<node>q;
int first[N],cnt;
struct pos{int to,next,w;}e[*N];
void ins(int a,int b,int w){e[++cnt]=(pos){b,first[a],w}; first[a]=cnt;}
void insert(int a,int b,int w){ins(a,b,w); ins(b,a,w);}
int dj(){
memset(d,0x7f,sizeof(d));
for(int i=;i<=k;i++) d[][i]=;
q.push((node){,,});
while(!q.empty()){
node p=q.top(); q.pop();
if(d[p.pos][p.h]!=p.d) continue;
if(p.pos==n) return p.d;
int x=p.pos,h=p.h;
for(int i=first[x];i;i=e[i].next){
int now=e[i].to;
if(d[now][h]>d[x][h]+e[i].w) d[now][h]=d[x][h]+e[i].w,q.push((node){d[now][h],h,now});
if(h<k&&d[now][h+]>d[x][h]) d[now][h+]=d[x][h],q.push((node){d[now][h+],h+,now});
}
}
return d[n][k];
}
int main()
{
int x,y,v;
n=read(); m=read(); k=read();
for(int i=;i<=m;i++) x=read(),y=read(),v=read(),insert(x,y,v);
printf("%d\n",dj());
return ;
}
bzoj 1579: [Usaco2009 Feb]Revamping Trails 道路升级——分层图+dijkstra的更多相关文章
- bzoj 1579: [Usaco2009 Feb]Revamping Trails 道路升级 -- 分层图最短路
1579: [Usaco2009 Feb]Revamping Trails 道路升级 Time Limit: 10 Sec Memory Limit: 64 MB Description 每天,农夫 ...
- BZOJ 1579: [Usaco2009 Feb]Revamping Trails 道路升级 分层图最短路 + Dijkstra
Description 每天,农夫John需要经过一些道路去检查牛棚N里面的牛. 农场上有M(1<=M<=50,000)条双向泥土道路,编号为1..M. 道路i连接牛棚P1_i和P2_i ...
- Bzoj 1579: [Usaco2009 Feb]Revamping Trails 道路升级 dijkstra,堆,分层图
1579: [Usaco2009 Feb]Revamping Trails 道路升级 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1573 Solv ...
- BZOJ 1579: [Usaco2009 Feb]Revamping Trails 道路升级( 最短路 )
最短路...多加一维表示更新了多少条路 -------------------------------------------------------------------------------- ...
- bzoj 1579: [Usaco2009 Feb]Revamping Trails 道路升级 优先队列+dij
1579: [Usaco2009 Feb]Revamping Trails 道路升级 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1768 Solv ...
- 【bzoj1579】[Usaco2009 Feb]Revamping Trails 道路升级 分层图最短路
题目描述 每天,农夫John需要经过一些道路去检查牛棚N里面的牛. 农场上有M(1<=M<=50,000)条双向泥土道路,编号为1..M. 道路i连接牛棚P1_i和P2_i (1 < ...
- BZOJ 1579 [Usaco2009 Feb]Revamping Trails 道路升级:dijkstra 分层图【将k条边改为0】
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1579 题意: 给你一个无向图,n个点,m条边,每条边有边权w[i]. 你可以将其中的k(k ...
- bzoj 1579: [Usaco2009 Feb]Revamping Trails 道路升级【分层图+spfa】
至死不用dijskstra系列2333,洛谷上T了一个点,开了O2才过 基本想法是建立分层图,就是建k+1层原图,然后相邻两层之间把原图的边在上一层的起点与下一层的终点连起来,边权为0,表示免了这条边 ...
- BZOJ 1579 [Usaco2009 Feb]Revamping Trails 道路升级
堆优化的dijkstra. 把一个点拆成k个. 日常空间要开炸一次.. //Twenty #include<cstdio> #include<cstring> #include ...
随机推荐
- python__高级 : 类当作装饰器
类在创建对象时,会调用 __init__ 初始化一些东西 , 然后 如果类中定义了 __call__ 方法,可以直接用 对象() 这种方法调用,所以可以用类来装饰函数: class Test(ob ...
- 微信小程序相关
https://www.cnblogs.com/shenzikun1314/p/7805168.html
- php解决sql_server连接问题
1.首先根据phpinfo()查看当前php版本以及线程安全情况(ts或者nts):2.下载sqlsrv扩展(适用32位php) 下载链接为https://www.microsoft.com/en-u ...
- POJ 3581 三段字符串(后缀数组)
Sequence Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 7923 Accepted: 1801 Case Tim ...
- Codeforces Round #449 (Div. 2) C. DFS
C. Nephren gives a riddle time limit per test 2 seconds memory limit per test 256 megabytes input st ...
- [Codeforces958F2]Lightsabers (medium)(思维)
Description 题目链接 Solution 设一个l指针指向当前数列左边,从左往右扫描一遍,将当前颜色记录, 当所有颜色都得到后,进行判断,如果当前l指向的颜色大于需要的颜色,l后移一位,然后 ...
- Android面试收集录4 Fragment详解
1.什么是Fragment? 你可以简单的理解为,Fragment是显示在Activity中的Activity. 它可以显示在Activity中,然后它也可以显示出一些内容. 因为它拥有自己的生命周期 ...
- dubbo-admin管理控制台的安装和使用
因为zookeeper只是一个黑框,我们无法看到是否存在了什么提供者或消费者,这时就要借助Dubbo-Admin管理平台来实时的查看,也可以通过这个平台来管理提者和消费者. dubbo下载及配置 du ...
- Robocopy.exe使用详例
Robocopy.exe使用详例 Robocopy.exe 是 微软在Windows server 2003 Resource Kit Tools 里面提供的程序来做备份的.Vis ...
- redis系列文章目录
redis系列文章目录 使用spring-data-redis实现incr自增 Redis 利用Hash存储节约内存 Redis学习笔记(九)redis实现时时直播列表缓存,支持分页[热点数据存储] ...