Generalized Low Rank Approximation of Matrices
Generalized Low Rank Approximations of Matrices
JIEPING YE*jieping@cs.umn.edu
Department of Computer Science & Engineering,University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
Published online:12 August 2005
Abstract.The problem of computing low rank approximations of matrices is considered. The novel
aspect of our approach is that the low rank approximations are on a collection of matrices. We formulate this as an optimization problem, which aims to minimize the reconstruction (approximation) error. To the best of our knowledge, the optimization problem
proposed in this paper does not admit a closed form solution. We thus derive an iterative algorithm, namely GLRAM, which stands for the Generalized Low Rank Approximations of Matrices. GLRAM reduces the reconstruction error sequentially, and the resulting
approximation is thus improved during successive iterations. Experimental results show that the algorithm converges rapidly.
We have conducted extensive experiments on image data to evaluate the effectiveness of the proposed algorithm and compare
the computed low rank approximations with those obtained from traditional Singular Value Decomposition (SVD) based methods. The comparison is based on the reconstruction error, misclassification error rate,and computation time. Results show that GLRAM is competitive
with SVD for classification, while it has a muchlower computation cost. However, GLRAM results in a larger reconstruction error than SVD. To further reduce the reconstruction error, we study the combination of GLRAM and SVD, namely GLRAM + SVD, where SVD is
repreceded by GLRAM. Results show that when using the same number of reduced dimensions, GLRAM+SVD achievessignificant
reduction of the reconstruction error as compared to GLRAM, while keeping the computation cost low.
Generalized Low Rank Approximation of Matrices的更多相关文章
- Sparse Principal Component Analysis via Regularized Low Rank Matrix Approximation(Adjusted Variance)
目录 前言 文章概述 固定\(\widetilde{\mathrm{v}}\) 固定\(\widetilde{\mathrm{u}}\) Adjusted Variance 前言 这篇文章用的也是交替 ...
- 吴恩达机器学习笔记59-向量化:低秩矩阵分解与均值归一化(Vectorization: Low Rank Matrix Factorization & Mean Normalization)
一.向量化:低秩矩阵分解 之前我们介绍了协同过滤算法,本节介绍该算法的向量化实现,以及说说有关该算法可以做的其他事情. 举例:1.当给出一件产品时,你能否找到与之相关的其它产品.2.一位用户最近看上一 ...
- 推荐系统(recommender systems):预测电影评分--构造推荐系统的一种方法:低秩矩阵分解(low rank matrix factorization)
如上图中的predicted ratings矩阵可以分解成X与ΘT的乘积,这个叫做低秩矩阵分解. 我们先学习出product的特征参数向量,在实际应用中这些学习出来的参数向量可能比较难以理解,也很难可 ...
- <<Numerical Analysis>>笔记
2ed, by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is l ...
- <Numerical Analysis>(by Timothy Sauer) Notes
2ed, by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is l ...
- 2017年计算语义相似度最新论文,击败了siamese lstm,非监督学习
Page 1Published as a conference paper at ICLR 2017AS IMPLE BUT T OUGH - TO -B EAT B ASELINE FOR S EN ...
- cs231n spring 2017 lecture15 Efficient Methods and Hardware for Deep Learning 听课笔记
1. 深度学习面临的问题: 1)模型越来越大,很难在移动端部署,也很难网络更新. 2)训练时间越来越长,限制了研究人员的产量. 3)耗能太多,硬件成本昂贵. 解决的方法:联合设计算法和硬件. 计算硬件 ...
- 李宏毅-Network Compression课程笔记
一.方法总结 Network Pruning Knowledge Distillation Parameter Quantization Architecture Design Dynamic Com ...
- cs231n spring 2017 lecture15 Efficient Methods and Hardware for Deep Learning
讲课嘉宾是Song Han,个人主页 Stanford:https://stanford.edu/~songhan/:MIT:https://mtlsites.mit.edu/songhan/. 1. ...
随机推荐
- Js的cookie
我们现在清除cookie缓存. 然后发起的请求观察: ============== ============= 已经有cookie的情况下发起请求: 我们在看看第一次没有缓存的情况下,返回的数据:
- QBXT Day 4 数学,数论
今天讲一讲数论吧(虽然清明讲过了) 进制转换 我们来看10这个数怎么转换成k进制 因为10=2^3+2^1,所以10就是1010 三进制也同理10=3^2+3^0,所以就是101 我们对于一个10进制 ...
- PHP版微信第三方实现一键登录及获取用户信息的方法
本文实例讲述了PHP版微信第三方实现一键登录及获取用户信息的方法.分享给大家供大家参考,具体如下: 注意,要使用微信在第三方网页登录是需要“服务号”才可以哦,所以必须到官方申请. 一开始你需要进入微信 ...
- SPOJ - BALNUM 数位dp
题意:求某一区间内的平衡数个数(指一个数,其中出现过的数,如果是偶数,那么必须出现奇数次,反之偶数次) 题解:用三进制来枚举(0到9)所有情况,0代表没有出现,1代表出现奇数次,2代表出现偶数次dp[ ...
- android Application Project目录结构
src:存放java源文件 gen: 资源配置文件 Android4.0: 4.0 类库 Android Private Lib: 支持库 Android Dependencies: android ...
- 33 python 并发编程之IO模型
一 IO模型介绍 为了更好地了解IO模型,我们需要事先回顾下:同步.异步.阻塞.非阻塞 同步(synchronous) IO和异步(asynchronous) IO,阻塞(blocking) IO和非 ...
- 是因为Session只能让服务器在一次连续的会话中记住你,而Cookie是记住浏览器一段时间
Cookie的作用 因为http协议先天不足是无记忆性. 还有一个区别是:Session是服务器端保存会话状态的机制. 而Cookie则是浏览器端保存会话的机制. Cookie 的应用
- AtCoder Beginner Contest 087 B - Coins
Time limit : 2sec / Memory limit : 256MB Score : 200 points Problem Statement You have A 500-yen coi ...
- hadoop-pig学习笔记
A1 = LOAD '/luo/lzttxt01.txt' AS (col1:chararray,col2:int,col3:int,col4:int,col5:double,col6:double) ...
- visualvm-profile以及远程访问
使用visualvm的Profiler功能,可以提供两方面的性能跟踪功能: Profile 一个是CPU,可以跟踪每个方法占用CPU的时长:比如你在发现CPU持续走高的时候可以通过Profile的CP ...