Generalized Low Rank Approximations of Matrices



JIEPING YE*jieping@cs.umn.edu

Department of Computer Science & Engineering,University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA

Published online:12 August 2005

        Abstract.The problem of computing low rank approximations of matrices is considered. The novel
aspect of our approach is that the low rank approximations are on a collection of matrices. We formulate this as an optimization problem, which aims to minimize the reconstruction (approximation) error. To the best of our knowledge, the optimization problem
proposed in this paper does not admit a closed form solution. We thus derive an iterative algorithm, namely GLRAM, which stands for the Generalized Low Rank Approximations of Matrices. GLRAM reduces the reconstruction error sequentially, and the resulting
approximation is thus improved during successive iterations. Experimental results show that the algorithm converges rapidly.

       We have conducted extensive experiments on image data to evaluate the effectiveness of the proposed algorithm and compare
the computed low rank approximations with those obtained from traditional Singular Value Decomposition (SVD) based methods. The comparison is based on the reconstruction error, misclassification error rate,and computation time. Results show that GLRAM is competitive
with SVD for classification, while it has a muchlower computation cost. However, GLRAM results in a larger reconstruction error than SVD. To further reduce the reconstruction error, we study the combination of GLRAM and SVD, namely GLRAM + SVD, where SVD is
repreceded by GLRAM. Results show that when using the same number of reduced dimensions, GLRAM+SVD achievessignificant
reduction of the reconstruction error as compared to GLRAM, while keeping the computation cost low.

Generalized Low Rank Approximation of Matrices的更多相关文章

  1. Sparse Principal Component Analysis via Regularized Low Rank Matrix Approximation(Adjusted Variance)

    目录 前言 文章概述 固定\(\widetilde{\mathrm{v}}\) 固定\(\widetilde{\mathrm{u}}\) Adjusted Variance 前言 这篇文章用的也是交替 ...

  2. 吴恩达机器学习笔记59-向量化:低秩矩阵分解与均值归一化(Vectorization: Low Rank Matrix Factorization & Mean Normalization)

    一.向量化:低秩矩阵分解 之前我们介绍了协同过滤算法,本节介绍该算法的向量化实现,以及说说有关该算法可以做的其他事情. 举例:1.当给出一件产品时,你能否找到与之相关的其它产品.2.一位用户最近看上一 ...

  3. 推荐系统(recommender systems):预测电影评分--构造推荐系统的一种方法:低秩矩阵分解(low rank matrix factorization)

    如上图中的predicted ratings矩阵可以分解成X与ΘT的乘积,这个叫做低秩矩阵分解. 我们先学习出product的特征参数向量,在实际应用中这些学习出来的参数向量可能比较难以理解,也很难可 ...

  4. <<Numerical Analysis>>笔记

    2ed,  by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is l ...

  5. <Numerical Analysis>(by Timothy Sauer) Notes

    2ed,  by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is l ...

  6. 2017年计算语义相似度最新论文,击败了siamese lstm,非监督学习

    Page 1Published as a conference paper at ICLR 2017AS IMPLE BUT T OUGH - TO -B EAT B ASELINE FOR S EN ...

  7. cs231n spring 2017 lecture15 Efficient Methods and Hardware for Deep Learning 听课笔记

    1. 深度学习面临的问题: 1)模型越来越大,很难在移动端部署,也很难网络更新. 2)训练时间越来越长,限制了研究人员的产量. 3)耗能太多,硬件成本昂贵. 解决的方法:联合设计算法和硬件. 计算硬件 ...

  8. 李宏毅-Network Compression课程笔记

    一.方法总结 Network Pruning Knowledge Distillation Parameter Quantization Architecture Design Dynamic Com ...

  9. cs231n spring 2017 lecture15 Efficient Methods and Hardware for Deep Learning

    讲课嘉宾是Song Han,个人主页 Stanford:https://stanford.edu/~songhan/:MIT:https://mtlsites.mit.edu/songhan/. 1. ...

随机推荐

  1. [Gym-101512C] 凸包+最远点对

    找最大的四边形或者三角形面积,先求凸包,然后枚举两个点,再通过旋转,找最大的另两个点 #include<bits/stdc++.h> #define fi first #define se ...

  2. Sublime Text 3总是出现“1 missing dependency was just installed.”

    Sublime Text 3总是出现“1 missing dependency was just installed.” 原因及结果 https://github.com/wbond/package_ ...

  3. 16-THREE.JS 半球光

    <!DOCTYPE html> <html> <head> <title></title> <script src="htt ...

  4. Eclipse 快捷键大全(群里共享的,留下来以后兴许会用到)

    Eclipse快捷键大全Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加) Ctrl+Alt+↑ 复制当前行到上一行 ...

  5. 29 python 并发编程之多线程理论

    一 什么是线程 在传统操作系统中,每个进程有一个地址空间,而且默认就有一个控制线程 线程顾名思义,就是一条流水线工作的过程,一条流水线必须属于一个车间,一个车间的工作过程是一个进程 车间负责把资源整合 ...

  6. Hadoop单机模式和伪分布式搭建教程CentOS

    1. 安装JAVA环境 2. Hadoop下载地址: http://archive.apache.org/dist/hadoop/core/ tar -zxvf hadoop-2.6.0.tar.gz ...

  7. PhotoShop使用指南(3)—— 将多张图片添加到图层

    第一步:选择文件菜单>脚本>将文件载入堆栈 第二步:点击浏览添加要批量载入的图片

  8. InnoDB引擎的特点及优化方法

    1.什么是InnoDB引擎?      InnoDB引擎是MySQL数据库的另一个重要的存储引擎,正成为目前MySQL AB所发行的新版的标准,被包含在所有二进制安装包里,和其他存储引擎相比,Inno ...

  9. php是如何工作的

    a:前提条件: apache服务器启动正常工作 b:客户端浏览器在地址栏输入一个程序地栏 按回车发送请求 {请求}http://127.0.0.1/day03/1.php c:apache接收请求,并 ...

  10. PHP学习创建水印,缩略图

    今天网上学习了一段PHP创建缩略图还有打水印的代码,如下: 其中将图片的路径作为参数传给函数,打水印的过程就是首先获取图片和logo的参数信息,然后将logo图片拷贝到原图的某个位置,然后保存,水印打 ...