Generalized Low Rank Approximation of Matrices
Generalized Low Rank Approximations of Matrices
JIEPING YE*jieping@cs.umn.edu
Department of Computer Science & Engineering,University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
Published online:12 August 2005
Abstract.The problem of computing low rank approximations of matrices is considered. The novel
aspect of our approach is that the low rank approximations are on a collection of matrices. We formulate this as an optimization problem, which aims to minimize the reconstruction (approximation) error. To the best of our knowledge, the optimization problem
proposed in this paper does not admit a closed form solution. We thus derive an iterative algorithm, namely GLRAM, which stands for the Generalized Low Rank Approximations of Matrices. GLRAM reduces the reconstruction error sequentially, and the resulting
approximation is thus improved during successive iterations. Experimental results show that the algorithm converges rapidly.
We have conducted extensive experiments on image data to evaluate the effectiveness of the proposed algorithm and compare
the computed low rank approximations with those obtained from traditional Singular Value Decomposition (SVD) based methods. The comparison is based on the reconstruction error, misclassification error rate,and computation time. Results show that GLRAM is competitive
with SVD for classification, while it has a muchlower computation cost. However, GLRAM results in a larger reconstruction error than SVD. To further reduce the reconstruction error, we study the combination of GLRAM and SVD, namely GLRAM + SVD, where SVD is
repreceded by GLRAM. Results show that when using the same number of reduced dimensions, GLRAM+SVD achievessignificant
reduction of the reconstruction error as compared to GLRAM, while keeping the computation cost low.
Generalized Low Rank Approximation of Matrices的更多相关文章
- Sparse Principal Component Analysis via Regularized Low Rank Matrix Approximation(Adjusted Variance)
目录 前言 文章概述 固定\(\widetilde{\mathrm{v}}\) 固定\(\widetilde{\mathrm{u}}\) Adjusted Variance 前言 这篇文章用的也是交替 ...
- 吴恩达机器学习笔记59-向量化:低秩矩阵分解与均值归一化(Vectorization: Low Rank Matrix Factorization & Mean Normalization)
一.向量化:低秩矩阵分解 之前我们介绍了协同过滤算法,本节介绍该算法的向量化实现,以及说说有关该算法可以做的其他事情. 举例:1.当给出一件产品时,你能否找到与之相关的其它产品.2.一位用户最近看上一 ...
- 推荐系统(recommender systems):预测电影评分--构造推荐系统的一种方法:低秩矩阵分解(low rank matrix factorization)
如上图中的predicted ratings矩阵可以分解成X与ΘT的乘积,这个叫做低秩矩阵分解. 我们先学习出product的特征参数向量,在实际应用中这些学习出来的参数向量可能比较难以理解,也很难可 ...
- <<Numerical Analysis>>笔记
2ed, by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is l ...
- <Numerical Analysis>(by Timothy Sauer) Notes
2ed, by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is l ...
- 2017年计算语义相似度最新论文,击败了siamese lstm,非监督学习
Page 1Published as a conference paper at ICLR 2017AS IMPLE BUT T OUGH - TO -B EAT B ASELINE FOR S EN ...
- cs231n spring 2017 lecture15 Efficient Methods and Hardware for Deep Learning 听课笔记
1. 深度学习面临的问题: 1)模型越来越大,很难在移动端部署,也很难网络更新. 2)训练时间越来越长,限制了研究人员的产量. 3)耗能太多,硬件成本昂贵. 解决的方法:联合设计算法和硬件. 计算硬件 ...
- 李宏毅-Network Compression课程笔记
一.方法总结 Network Pruning Knowledge Distillation Parameter Quantization Architecture Design Dynamic Com ...
- cs231n spring 2017 lecture15 Efficient Methods and Hardware for Deep Learning
讲课嘉宾是Song Han,个人主页 Stanford:https://stanford.edu/~songhan/:MIT:https://mtlsites.mit.edu/songhan/. 1. ...
随机推荐
- LeetCode OJ:Delete Node in a Linked List(链表节点删除)
Write a function to delete a node (except the tail) in a singly linked list, given only access to th ...
- 原生JDBC的使用
public class ConnDB { private Connection ct = null; //驱动程序名 String driver = "com.mysql.jdbc.Dri ...
- hibernate - 一级缓存和三种状态解析
转载自:http://www.cnblogs.com/whgk/p/6103038.html 一.一级缓存和快照 什么是一级缓存呢? 很简单,每次hibernate跟数据库打交道时,都是通过sessi ...
- memcached使用libevent 和 多线程模式
一.libevent的使用 首先我们知道,memcached是使用了iblievet作为网络框架的,而iblievet又是单线程模型的基于linux下epoll事件的异步模型.因此,其基本的思想就是 ...
- 使用zip()并行迭代
- CF 739E Gosha is Hunting
有 $n$ 个 Pokemon,你有 $A$ 个一类精灵球,$B$ 个二类精灵球 分别给出每个 Pokemon 被这两类精灵球捕捉的概率 求抓到 Pokemon 的最优期望个数 $n\leq 2000 ...
- LeetCode Student Attendance Record I
原题链接在这里:https://leetcode.com/problems/student-attendance-record-i/description/ 题目: You are given a s ...
- java 使用最新api操作mongodb
// package com.auto.test.dbmodel; import java.util.ArrayList; import org.bson.Document;import org.bs ...
- Xml日志记录文件最优方案(附源代码)
Xml作为数据存储的一种方式,当数据非常大的时候,我们将碰到很多Xml处理的问题.通常,我们对Xml文件进行编辑的最直接的方式是将xml文件加载到XmlDocument,在内存中来对XmlDocume ...
- Linux内核 - 定时器
#include <linux/timer.h> //头文件 struct timer_list mytimer; //定义变量 static void my_timer(unsigned ...