Unity3d修炼之路:游戏开发中,3d数学知识的练习【1】(不断更新.......)
#pragma strict public var m_pA : Vector3 = new Vector3(2.0f, 4.0f, 0.0f);
public var m_pB : Vector3 = new Vector3(-4.0f, 2.0f,0.0f);
private var m_pTemp : Vector3 = new Vector3(0.0f,0.0f,0.0f);
private var m_fTemp : float = 0.0f;
private var m_fAngle : float = 0.0f; function Awake(){
Debug.Log("向量缩小2倍 :" + VectorScale(m_pA,2).ToString());
//Debug.Log(m_pA.operator * 2(););
Debug.Log("向量的负向量 :" + FVector(m_pB).ToString()); Debug.Log("向量标准化 :" + VectorZuo3(m_pA).ToString());
Debug.Log(Vector3.Normalize(m_pA)); Debug.Log("a向量到b向量的长度 :" + Vector2VectorDis(m_pA,m_pB));
Debug.Log(Vector3.Distance(m_pA,m_pB)); Debug.Log("b向量与a向量的夹角 :" + VectorAndVectorAngle(m_pA,m_pB));
Debug.Log(Vector3.Angle(m_pA,m_pB)); Debug.Log("a向量垂直于b向量的向量 :" + VectorZuoye6(m_pA,m_pB).ToString());
Debug.Log(m_pA - Vector3.Project(m_pA,m_pB)); Debug.Log("两个向量在平面上的夹角 :" + VectorZuoye7(m_pA,m_pB));
} //求向量的模
function VerctorMagnitudeTest(a : Vector3) : float{
return Mathf.Sqrt(a.x * a.x + a.y * a.y + a.z * a.z);
} //求向量的点积
function VectorDotTest(a : Vector3,b : Vector3) : float{ m_fTemp = a.x * b.x + a.y * b.y + a.z * b.z; return m_fTemp;
}
//求向量的叉乘
function VectorChaTest(a : Vector3 , b : Vector3) : Vector3{ m_pTemp.x = a.y * b.z - a.z * b.y;
m_pTemp.y = a.z * b.x - a.x * b.z;
m_pTemp.z = a.x * b.y - a.y * b.x; return m_pTemp;
} //向量进行缩放
function VectorScale(a : Vector3,n : int) : Vector3{
m_pTemp = a;
if(n != 0) //判0
{
m_pTemp.x /= n;
m_pTemp.y /= n;
m_pTemp.z /= n;
} return m_pTemp;
}
//向量的负向量
function FVector(a : Vector3) : Vector3{ m_pTemp = a;
m_pTemp.x = 0.0f -m_pTemp.x;
m_pTemp.y = 0.0f -m_pTemp.y;
m_pTemp.z = 0.0f -m_pTemp.z; return m_pTemp;
} //向量标准化
function VectorZuo3(a : Vector3) : Vector3{ m_pTemp = a;
//var fDis : float = a.magnitude;//qiu mo de
var fDis : float = VerctorMagnitudeTest(a);//求模
m_pTemp.x = a.x / fDis;//不须要判0
m_pTemp.y = a.y / fDis;
m_pTemp.z = a.z / fDis; return m_pTemp; }
//a向量到b向量的长度
function Vector2VectorDis(a : Vector3,b : Vector3) : float{ m_pTemp.x = b.x - a.x;
m_pTemp.y = b.y - a.y;
m_pTemp.z = b.z - a.z;
m_fTemp = VerctorMagnitudeTest(m_pTemp);//用自己定义的求模函数 return m_fTemp;
} //b向量与a向量的夹角
// arcos((a与b点乘)/(a模*b模))
function VectorAndVectorAngle(a : Vector3,b : Vector3) : float{
var fDot : float = VectorDotTest(a,b);//向量的点乘
var fDisM : float = VerctorMagnitudeTest(a) * VerctorMagnitudeTest(b);
var fTemp : float = Mathf.Acos(fDot / fDisM);
m_fAngle = fTemp * Mathf.Rad2Deg; return m_fAngle;
} //a向量垂直于b向量的向量
// a向量 – b*((a与b的点乘)/b模的平方) function VectorZuoye6(a : Vector3, b : Vector3) : Vector3{
var pTemp1 : Vector3 = b;
var pTemp2 : Vector3 = a; pTemp1.x *= VectorDotTest(a,b)/(VerctorMagnitudeTest(b)*VerctorMagnitudeTest(b));//用自己定义的点积和求模函数
pTemp1.y *= VectorDotTest(a,b)/(VerctorMagnitudeTest(b)*VerctorMagnitudeTest(b));//用自己定义的点积和求模函数
pTemp1.z *= VectorDotTest(a,b)/(VerctorMagnitudeTest(b)*VerctorMagnitudeTest(b));//用自己定义的点积和求模函数 m_pTemp.x = pTemp2.x - pTemp1.x;
m_pTemp.y = pTemp2.y - pTemp1.y;
m_pTemp.z = pTemp2.z - pTemp1.z; return m_pTemp;
} //a向量与b向量在 向量a与向量b所形成平面 上的夹角
// arsin(a与b叉乘的模/(a模*b模)) function VectorZuoye7(a : Vector3,b : Vector3) : float{
m_fTemp = Mathf.Asin( VerctorMagnitudeTest( VectorChaTest(a,b)) / ( VerctorMagnitudeTest(a) * VerctorMagnitudeTest(b) ) );//用自己定义的叉乘和求模函数
m_fAngle = m_fTemp * Mathf.Rad2Deg; return m_fAngle;
}
Unity3d修炼之路:游戏开发中,3d数学知识的练习【1】(不断更新.......)的更多相关文章
- [Unity游戏开发]向量在游戏开发中的应用(三)
本文已同步发表在CSDN:http://blog.csdn.net/wenxin2011/article/details/51088236 在上一篇博客中讲了利用向量点乘在游戏开发中应用的几种情景.本 ...
- [Unity游戏开发]向量在游戏开发中的应用(二)
本文已同步发表在CSDN:http://blog.csdn.net/wenxin2011/article/details/50972976 在上一篇博客中讲了利用向量方向的性质来解决问题.这篇博客将继 ...
- [Unity游戏开发]向量在游戏开发中的应用(一)
本文已同步发表在CSDN:http://blog.csdn.net/wenxin2011/article/details/50810102 向量在游戏开发中是非常实用的,我们在学校学完向量的知识后,只 ...
- 游戏开发中IIS常见支持MIME类型文件解析
游戏开发中IIS常见支持MIME类型文件解析 .apkapplication/vnd.android .ipaapplication/vnd.iphone .csbapplication/octet- ...
- Cocos2d-x游戏开发中的消息机制:CCNotificationCenter的使用
在HTML5游戏开发中,js可以使用Event对象的addEventListener(添加事件监听).dispatchEvent(触发事件)实现监听机制,如果在coocos2d-x中,去实现这种机制该 ...
- 二、Cocos2dx概念介绍(游戏开发中不同的坐标系,cocos2dx锚点)
注:ccp是cocos2dx中的一个宏定义,#define ccp(__X__,__Y__)CCPointMake((float)__X__, (float)__Y__),在此文章中表示坐标信息 1. ...
- [C++基金会]位计算 游戏开发中的应用
定义的位操作:通俗点说,,位计算是计算机操作二进制整数. 无论整数可以用二的方式来表示进度,不同类型的其长度的整数位的是不一样的.INT8要么char靠8个月2 位表示,INT16或者short是由1 ...
- 在基于TypeScript的LayaAir HTML5游戏开发中使用AMD
在基于TypeScript的LayaAir HTML5游戏开发中使用AMD AMD AMD是"Asynchronous Module Definition"的缩写,意思就是&quo ...
- 借助AMD来解决HTML5游戏开发中的痛点
借助AMD来解决HTML5游戏开发中的痛点 游戏开发的痛点 现在,基于国内流行引擎(LayaAir和Egret)和TypeScript的HTML5游戏开发有诸多痛点: 未采用TypeScript编译器 ...
- C#游戏开发中快速的游戏循环
C#游戏开发中快速的游戏循环的实现.参考<精通C#游戏编程>一书. using System; using System.Collections.Generic; using System ...
随机推荐
- const 作用
转载自:http://www.cnblogs.com/xudong-bupt/p/3509567.html 1.const 修饰成员变量 1 #include<iostream> 2 us ...
- 微信小程序实现豆瓣读书
个人练习项目,使用了scss+webstorm watcher来处理样式.整体上没有什么难点. github:https://github.com/axel10/wx-douban-read
- Python的网络编程[3] -> BOOTP 协议[0] -> BOOTP 的基本理论
BOOTP协议 / BOOTP Protocol 目录 基本理论 BOOTP 与 DHCP 通信流程 数据报文格式 报文加解码实现 1. 基本理论 / Basic Theory BOOTP(Boots ...
- 后门构建工具Backdoor Factory
后门构建工具Backdoor Factory 在渗透测试中,后门程序帮助渗透测试人员在目标机器上执行各种预期的操作.例如,它可以建立从目标主机到攻击机的网络连接,方便渗透测试人员控制目标主机.Ka ...
- [BZOJ3237][AHOI2013]连通图(分治并查集)
3237: [Ahoi2013]连通图 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1736 Solved: 655[Submit][Status ...
- POJ 2836 Rectangular Covering(状压DP)
[题目链接] http://poj.org/problem?id=2836 [题目大意] 给出二维平面的一些点,现在用一些非零矩阵把它们都包起来, 要求这些矩阵的面积和最小,求这个面积和 [题解] 我 ...
- tld自定义标签系列--使用body-content的作用--比较有用
body-content的值有下面4种: <xsd:enumeration value="tagdependent"/> <xsd:enumeration val ...
- extjs grid合并单元格
http://blog.csdn.net/kunoy/article/details/7829395 /** * Kunoy * 合并单元格 * @param {} grid 要合并单元格的grid对 ...
- c#作业(2班)
第二章 1.编写一个控制台程序,要求: 接受从控制台输入的姓名,如:张三 程序响应:你好,张三. 在代码中使用规范的注释,说明程序的功能 编译程序,并执行. 程序执行效果如下图: using Syst ...
- CSS浮动设置与清除
float:设置浮动 浮动会使元素脱离普通文档流,使元素向左或向右移动,其周围的元素也会重新排布,在布局中非常有用. html: <p>以下是图片的浮动设置:</p> < ...