RMQ是英文Range Minimum/Maximum Query的缩写,是询问某个区间内的最值,这里讲一种解法:ST算法

ST算法通常用在要多次(10^6级别)询问区间最值的问题中,相比于线段树,它实现更简单,效率更高,但不支持修改,且一般只能维护最值。

ST算法实际上是动规,原理如下:

预处理:

一组数a[1]..a[n],设f[i][j]表示从a[i]到a[i+2^j-1]这个范围中的最值,元素个数为2^j个。

可以分成2部分,即从a[i]至a[i+2^(j-1)-1]与a[i+2^(j-1)]至a[i+2^j-1],所以

f[i][j]也可以分成f[i][j-1]与f[i+2^(j-1)][j-1],整个区间的最大值一定是左右两部分最大值的较大值,

于是可得状态转移方程:f[i][j]=max(f[i][j-1],f[i+2^(j-1)][j-1]),边界条件为f[i][0]=a[i],这样即可在O(n log(n))的时间内预处理f数组。

询问:

若询问区间[l,r]的最大值,可以先求出最大的x,满足2^x<=r-l+1,那么区间[l,r]=[l,l+2^x-1]U[r-2^x+1,r],两个区间的元素个数都为2^x,

所以[l,r]中的最大值为max(f[l][x],f[r-2^x+1][x]),可以在O(1)内计算出来(对于m次询问,需要O(m)的时间复杂度)。这两个区间虽然有交集,但对最值没有影响,这就是ST算法只使用于区间最值的原因。

总结:

求区间[x,y]的最大值:

k=log2(y-x+1);

ans=max(f[x][k],f[y-2^k+1][k]);

技巧:

因为cmath库中的log2函数效率不高,所以为了提高速度,通常会使用O(N)的递推预处理出1~N这N种区间长度各自对应的k值。

具体地,设log[x]表示log2(x)向下取整,则log[x]=log[x/2]+1。这样总时间复杂度为log(n*log(n)+m+n)。

放一道例题:

平衡阵容(Balanced Lineup)

题目描述

每天,农夫 John 的N(1 <= N <= 50,000)头牛总是按同一序列排队. 有一天, John决定让一些牛们玩一场飞盘比赛. 他准备找一群在对列中为置连续的牛来进行比赛. 但是为了避免水平悬殊,牛的身高不应该相差太大. John 准备了Q (1 <= Q <= 180,000) 个可能的牛的选择和所有牛的身高 (1 <= 身高 <= 1,000,000). 他想知道每一组里面最高和最低的牛的身高差别. 注意: 在最大数据上, 输入和输出将占用大部分运行时间.

输入

6 3
1
7
3
4
2
5
1 5
4 6
2 2

输出

6

3

0

[参考程序]

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<climits>
#include<cmath>
#include<algorithm>
using namespace std; const int N = ;
int FMAX[N][], FMIN[N][]; void RMQ(int n)
{
for(int j = ; j != ; ++j)
{
for(int i = ; i <= n; ++i)
{
if(i + ( << j) - <= n)
{
FMAX[i][j] = max(FMAX[i][j - ], FMAX[i + ( << (j - ))][j - ]);
FMIN[i][j] = min(FMIN[i][j - ], FMIN[i + ( << (j - ))][j - ]);
}
}
}
} int main()
{
int num, query;
int a, b;
while(scanf("%d %d", &num, &query) != EOF)
{
for(int i = ; i <= num; ++i)
{
scanf("%d", &FMAX[i][]);
FMIN[i][] = FMAX[i][];
}
RMQ(num);
while(query--)
{
scanf("%d%d", &a, &b);
int k = (int)(log(b - a + 1.0) / log(2.0));
int maxsum = max(FMAX[a][k], FMAX[b - ( << k) + ][k]);
int minsum = min(FMIN[a][k], FMIN[b - ( << k) + ][k]);
printf("%d\n", maxsum - minsum);
}
}
return ;
}

参考书籍:《信息学奥赛一本通·提高篇》

提高篇(1):RMQ问题与ST表的更多相关文章

  1. 【算法学习笔记】RMQ问题与ST表

    \(0.\) RMQ问题 P1816 人话翻译 给定一个长度为\(n\)的数列\(a\),然后有\(m\)组询问,每次询问一个区间\([l,r]\)的最小值. 其中\(m,n\leq10^5\) \( ...

  2. 51Nod.1766.树上最远点对(树的直径 RMQ 线段树/ST表)

    题目链接 \(Description\) 给定一棵树.每次询问给定\(a\sim b,c\sim d\)两个下标区间,从这两个区间中各取一个点,使得这两个点距离最远.输出最远距离. \(n,q\leq ...

  3. [poj3264]rmq算法学习(ST表)

    解题关键:rmq模板题,可以用st表,亦可用线段树等数据结构 log10和log2都可,这里用到了对数的换底公式 类似于区间dp,用到了倍增的思想 $F[i][j] = \min (F[i][j - ...

  4. 【模板】RMQ问题的ST表实现

    $RMQ$问题:给定一个长度为$N$的区间,$M$个询问,每次询问$[L_i,R_i]$这段区间元素的最大值/最小值. $RMQ$的高级写法一般有两种,即为线段树和$ST$表. 本文主要讲解一下$ST ...

  5. RMQ问题及ST表

    RMQ(Range Minimum/Maximum Query)问题指的是一类对于给定序列,要求支持查询某区间内的最大.最小值的问题.很显然,如果暴力预处理的话复杂度为 \(O(n^2)\),而此类问 ...

  6. RMQ算法使用ST表实现

    RMQ RMQ (Range Minimum Query),指求区间最小值.普通的求区间最小值的方法是暴力. 对于一个数列: \[ A_1,~ A_2,~ A_3,~ \cdots,~ A_n \] ...

  7. rmq问题:ST表

    存板子.O(nlogn)预处理,O(1)查询.空间O(nlogn). int d[1000006][25]; int mn[1000006]; void rmq_init() { for(int i= ...

  8. 洛谷 P2880 [USACO07JAN]Balanced Lineup G (ST表模板)

    题意:给你一组数,询问\(q\)次,问所给区间内的最大值和最小值的差. 题解:经典RMQ问题,用st表维护两个数组分别记录最大值和最小值然后直接查询输出就好了 代码: int n,q; int a[N ...

  9. RMQ问题 - ST表的简单应用

    2017-08-26 22:25:57 writer:pprp 题意很简单,给你一串数字,问你给定区间中最大值减去给定区间中的最小值是多少? 用ST表即可实现 一开始无脑套模板,找了最大值,找了最小值 ...

随机推荐

  1. Numpy的那些事儿

    2 NumPy-快速处理数据 标准安装的Python中用列表(list)保存一组值,可以用来当作数组使用,不过由于列表的元素可以是任何对象,因此列表中所保存的是对象的指针.这样为了保存一个简单的[1, ...

  2. Emacs学习笔记2

    emacs的启动初始化 需要有一个~/.emacs文件, 这个和vim一样 emacs中的查找与替换 递增查找 C-s, 在minibuffer中输入即可, 在一次C-s会跳转到下一个 两次C-g取消 ...

  3. 修改默认 JVM 参数 securerandom.source

    最近在云服务器上部署tomcat的时候,执行 startup.sh老是卡住了. 开始以为是日志配的不对,因为在对象中引入的是slf4,不是apache的log4j,后面把所有引入的地方都修改为Apac ...

  4. node模块机制

    一.node模块化机制  1.commonJS模块规范包括三部分:模块引用.模块定义.模块标识.例如: //math.js exports.add = function(){    var sum = ...

  5. BZOJ1044: [HAOI2008]木棍分割(dp 单调队列)

    题意 题目链接 Sol 比较套路的一个题. 第一问二分答案check一下 第二问设\(f[i][j]\)表示前\(i\)个数,切了\(j\)段的方案数,单调队列优化一下. 转移的时候只需要保证当前段的 ...

  6. Android 极光推送JPush---自定义提示音

    极光推送提供三种方法实现Notification通知 三方开发平台发送普通消息,客户端设置PushNotificationBuilder,实现基础的Notification通知 三方开放平台发送普通消 ...

  7. android打包代码混淆

    android应用打包代码混淆:   1.将project.propertier文件中的proguard.config=proguard-android.txt打开  拷贝指定的文件到应用中 2.更改 ...

  8. Quartz .Net(定时框架):

    Quartz .Net(定时框架): 基本说明: 说明:Quartz .Net 是一个从 Java 版的 Quartz 移植过来定时任务框架,可以实现异常灵活的定 时任务 用法: 安装 Quartz ...

  9. C#设计模式--适配器模式(结构型模式)

    一.适配器模式介绍: 适配器模式:将一个类的接口,转换成客户希望的另外一个接口.adapter模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作 例子分析(充电器充电): 模式中的角色: 安 ...

  10. 悟空crm-0.5.4 (OpenLogic CentOS7.2)

    平台: CentOS 类型: 虚拟机镜像 软件包: 5kcrm0.5.4 centos7.2 lamp stack 5.6.22 commercial crm lamp 服务优惠价: 按服务商许可协议 ...