转载网址:http://www.cnblogs.com/AndyJee/p/3846455.html

主要内容:

1、QR分解定义

2、QR分解求法

3、QR分解与最小二乘

4、Matlab实现

一、QR分解

R分解法是三种将矩阵分解的方式之一。这种方式,把矩阵分解成一个正交矩阵与一个上三角矩阵的积。

QR 分解经常用来解线性最小二乘法问题。QR 分解也是特定特征值算法QR算法的基础。

定义:

实数矩阵 A 的 QR 分解是把 A 分解为Q、R,这里的 Q 是正交矩阵(意味着 QTQ = I)而 R 是上三角矩阵。类似的,我们可以定义 A 的 QL, RQ 和 LQ 分解。

更一般的说,我们可以因数分解复数 m×n 矩阵(有着 m ≥ n)为 m×n 酉矩阵(在 QQ = I 的意义上)和n×n 上三角矩阵的乘积。

如果 A 是非奇异的,则这个因数分解为是唯一,当我们要求 R 的对角是正数的时候。

二、QR分解的求法

QR分解的实际计算有很多方法,例如Givens旋转Householder变换,以及Gram-Schmidt正交化等等。每一种方法都有其优点和不足。

三、QR分解与最小二乘

最小二乘:

对给定数据点{(Xi,Yi)}(i=0,1,…,m),在取定的函数类Φ 中,求p(x)∈Φ,使误差的平方和E^2最小,E^2=∑[p(Xi)-Yi]^2。从几何意义上讲,就是寻求与给定点 {(Xi,Yi)}(i=0,1,…,m)的距离平方和为最小的曲线y=p(x)。函数p(x)称为拟合函数或最小二乘解,求拟合函数p(x)的方法称为曲线拟合的最小二乘法。

最小二乘的矩阵形式:Ax=b,其中A为nxk的矩阵,x为kx1的列向量,b为nx1的列向量。如果n>k(方程的个数大于未知量的个数),这个方程系统称为Over Determined System,如果n<k(方程的个数小于未知量的个数),这个系统就是Under Determined System。

最小二乘与QR分解:

正常来看,这个方程是没有解的,但在数值计算领域,我们通常是计算 min ||Ax-b||,解出其中的x。比较直观的做法是求解A'Ax=A'b,但通常比较低效。其中一种常见的解法是对A进行QR分解(A=QR),其中Q是nxk正交矩阵(Orthonormal Matrix),R是kxk上三角矩阵(Upper Triangular Matrix),然后min ||Ax-b|| = min ||QRx-b|| = min ||Rx-Q'b||,用MATLAB命令x=R\(Q'*b)可解得x。

最小二乘的Matlab实现:

① 一次函数使用polyfit(x,y,1)

②多项式函数使用 polyfit(x,y,n),n为次数

拟合曲线

x=[0.5,1.0,1.5,2.0,2.5,3.0],

y=[1.75,2.45,3.81,4.80,7.00,8.60]。

解:MATLAB程序如下:

x=[0.5,1.0,1.5,2.0,2.5,3.0];

y=[1.75,2.45,3.81,4.80,7.00,8.60];

p=polyfit(x,y,2)

x1=0.5:0.5:3.0;

y1=polyval(p,x1);

plot(x,y,'*r',x1,y1,'-b')

计算结果为:

p =0.5614 0.8287 1.1560

即所得多项式为y=0.5614x^2+0.8287x+1.15560

③非线性函数使用 lsqcurvefit(fun,x0,x,y)

四、QR分解的Matlab实现

[Q,R]=qr(A) or [Q,R]=qr(A,0)    (二者的区别自行help或doc一下)
其中Q代表正规正交矩阵,
而R代表上三角形矩阵。

此外,原矩阵A不必为正方矩阵; 如果矩阵A大小为n*m,则矩阵Q大小为n*m,矩阵R大小为m*m。

五、参考文献:

http://blog.sina.com.cn/s/blog_64367bb90100ikji.html

http://www.360doc.com/content/13/1015/09/12712639_321543226.shtml

QR分解与最小二乘(转载自AndyJee)的更多相关文章

  1. QR分解与最小二乘

    主要内容: 1.QR分解定义 2.QR分解求法 3.QR分解与最小二乘 4.Matlab实现   一.QR分解 R分解法是三种将矩阵分解的方式之一.这种方式,把矩阵分解成一个正交矩阵与一个上三角矩阵的 ...

  2. 机器学习中的矩阵方法03:QR 分解

    1. QR 分解的形式 QR 分解是把矩阵分解成一个正交矩阵与一个上三角矩阵的积.QR 分解经常用来解线性最小二乘法问题.QR 分解也是特定特征值算法即QR算法的基础.用图可以将分解形象地表示成: 其 ...

  3. QR分解

        从矩阵分解的角度来看,LU和Cholesky分解目标在于将矩阵转化为三角矩阵的乘积,所以在LAPACK种对应的名称是trf(Triangular Factorization).QR分解的目的在 ...

  4. QR 分解

    将学习到什么 介绍了平面旋转矩阵,Householder 矩阵和 QR 分解以入相关性质.   预备知识 平面旋转与 Householder 矩阵是特殊的酉矩阵,它们在建立某些基本的矩阵分解过程中起着 ...

  5. QR分解迭代求特征值——原生python实现(不使用numpy)

    QR分解: 有很多方法可以进行QR迭代,本文使用的是Schmidt正交化方法 具体证明请参考链接 https://wenku.baidu.com/view/c2e34678168884868762d6 ...

  6. 矩阵QR分解

    1 orthonormal 向量与 Orthogonal 矩阵 orthonormal 向量定义为 ,任意向量  相互垂直,且模长为1: 如果将  orthonormal 向量按列组织成矩阵,矩阵为  ...

  7. 【矩阵】RQ/QR 分解

    Multiple View Geometry in Computer Vision A.4.1.1 (page 579) 将一个 3x3 矩阵 $ A $ 进行 RQ 分解是将其分解成为一个上三角阵 ...

  8. 矩阵的QR分解

    #include <cstdio> #include <cstdlib> #include <algorithm> #include <cmath> # ...

  9. SVD分解的理解[转载]

    http://www.bfcat.com/index.php/2012/03/svd-tutorial/ SVD分解(奇异值分解),本应是本科生就掌握的方法,然而却经常被忽视.实际上,SVD分解不但很 ...

随机推荐

  1. EXCEL 导入SQL SERVER 方法

    1.注意:确认是否已安装 AccessDatabaseEngine.exe 2.可视化按提示操作.

  2. thinkPHP 模板操作

    1.assign赋值 $this->assign('title','模板操作'); $this->assign('bests',$bests);//$bests是二维数组 2.变量的输出 ...

  3. mc04_IntelliJ IDEA常用设置

    字体设置 File --> Settings --> Font 项目编码设置 File --> Settings --> File Encodings 项目依赖 即一个项目引用 ...

  4. getResourceAsStream小结

    前提:我用的是gradle工程,文件放在resource下,resource对应的就是类路径,文件的路径和代码的路径保持一致,如Client的包名和peizhi.properties一致,例如Clie ...

  5. @Value("#{}")与@Value("${}")的区别

    原文:https://blog.csdn.net/u012925172/article/details/84926064 @Value("#{}")   SpEL表达式@Value ...

  6. c++ 封装线程库 0

    1.互斥锁简介 互斥锁主要用于互斥,互斥是一种竞争关系,用来保护临界资源一次只被一个线程访问. POSIX Pthread提供下面函数用来操作互斥锁. int pthread_mutex_init(p ...

  7. JS判断所有IE浏览器所有版本

    原来判断IE浏览器版本很简单,但是随着版本的升级,navigator.userAgent显示的信息也不一样:下图是IE11显示的信息

  8. 剑指offer中经典的算法题之从头到尾打印链表

    话不多说上代码: 我自己的算法是: /** * public class ListNode { * int val; * ListNode next = null; * * ListNode(int ...

  9. leetcode 196. Delete Duplicate Emails 配合查询的delete

    https://leetcode.com/problems/delete-duplicate-emails/description/ 题意要对原来的数据表进行删除,不删除不行,它每次只输出原来那个表. ...

  10. OpenStack Weekly Rank 2015.08.17

    Module Reviews Drafted Blueprints Completed Blueprints Filed Bugs Resolved Bugs Cinder 5 1 1 6 13 Sw ...