Food Problem

Time Limit: 3000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 660    Accepted Submission(s): 196

Problem Description
Few days before a game of orienteering, Bell came to a mathematician to solve a big problem. Bell is preparing the dessert for the game. There are several different types of desserts such as small cookies, little grasshoppers and tiny mantises. Every type of dessert may provide different amounts of energy, and they all take up different size of space.

Other than obtaining the desserts, Bell also needs to consider moving them to the game arena. Different trucks may carry different amounts of desserts in size and of course they have different costs. However, you may split a single dessert into several parts and put them on different trucks, then assemble the parts at the game arena. Note that a dessert does not provide any energy if some part of it is missing.

Bell wants to know how much would it cost at least to provide desserts of a total energy of p (most of the desserts are not bought with money, so we assume obtaining the desserts costs no money, only the cost of transportation should be considered). Unfortunately the mathematician is having trouble with her stomach, so this problem is left to you.

 
Input
The first line of input contains a integer T(T≤10) representing the number of test cases.

For each test case there are three integers n,m,p on the first line (1≤n≤200,1≤m≤200,0≤p≤50000), representing the number of different desserts, the number of different trucks and the least energy required respectively.

The i−th of the n following lines contains three integers ti,ui,vi(1≤ti≤100,1≤ui≤100,1≤vi≤100) indicating that the i−th dessert can provide tienergy, takes up space of size ui and that Bell can prepare at most vi of them.

On each of the next m lines, there are also three integers xj,yj,zj(1≤xj≤100,1≤yj≤100,1≤zj≤100) indicating that the j−th truck can carry at most size of xj , hiring each one costs yj and that Bell can hire at most zj of them.

 
Output
For every test case output the minimum cost to provide the dessert of enough energy in the game arena if it is possible and its cost is no more than 50000. Otherwise, output TAT on the line instead.
 
Sample Input
4
1 1 7
14 2 1
1 2 2
1 1 10
10 10 1
5 7 2
5 3 34
1 4 1
9 4 2
5 3 3
1 3 3
5 3 2
3 4 5
6 7 5
5 3 8
1 1 1
1 2 1
1 1 1
 
Sample Output
4
14
12
TAT
 
Source
 
 
题目大意:T组测试数据。给你n种食物,m种货车,p表示询问运送不少于p能量值的食物最少需要的运费。然后给你n种食物的能量值energy,食物的体积大小size,这种食物的份数amount。然后m种货车,每种货车能运送的体积siz,运费cost,这种车有多少辆number。如果运费多于5W或者不能达到运送的要求,输出TAT。
 
解题思路:两次多重背包。第一次定义dp[j]=min(dp[j],dp[j-k*energy]+size*k)表示能量为j时需要的最少空间。第二次定义dp[j]=max(dp[j],dp[j-k*size]+k*number)。表示运费为j时最大运输量。对于能量的背包最大容量,我们取所有食物的能量和与50000的最小值。对于花费的背包最大容量,我们取所有货车的花费和与50000的最小值。最后需要从p到取的能量的最小值中找一个最小的值作为阀值,找出最小不小于阀值的花费。
 
#include<bits/stdc++.h>
using namespace std;
const int INF=0x3f3f3f3f;
struct Cake{
int energy,siz,amont;
}cakes[220];
struct Truck{
int siz,cost,num;
}trucks[220];
int dp1[55000],dp2[55000];
void ZeroOnePack(int cost,int weight,int V,int *dp,int typ){
if(typ==1)
for(int i=V;i>=cost;i--){
dp[i]=min(dp[i],dp[i-cost]+weight);
}
else
for(int i=V;i>=cost;i--){
dp[i]=max(dp[i],dp[i-cost]+weight);
}
}
void CompletePack(int cost,int weight,int V,int *dp,int typ){
if(typ==1)
for(int i=cost;i<=V;i++){
dp[i]=min(dp[i],dp[i-cost]+weight);
}
else
for(int i=cost;i<=V;i++){
dp[i]=max(dp[i],dp[i-cost]+weight);
}
}
void MultiplePack(int cost,int weight,int amount,int V,int *d,int typ){
if(cost*amount>=V){
CompletePack(cost,weight,V,d,typ);
return ;
}
int k=1;
while(amount>k){
ZeroOnePack(cost*k,weight*k,V,d,typ);
amount-=k;
k*=2;
}
ZeroOnePack(cost*amount,weight*amount,V,d,typ);
}
int main(){
int T,n,m,p;
scanf("%d",&T);
while(T--){
memset(dp1,INF,sizeof(dp1));
memset(dp2,0,sizeof(dp2));
dp1[0]=0;
int vv=0,cc=0;
scanf("%d%d%d",&n,&m,&p);
for(int i=1;i<=n;i++){
scanf("%d%d%d",&cakes[i].energy,&cakes[i].siz,&cakes[i].amont);
vv+=cakes[i].energy*cakes[i].amont;
}
for(int i=1;i<=m;i++){
scanf("%d%d%d",&trucks[i].siz,&trucks[i].cost,&trucks[i].num);
cc+=trucks[i].cost*trucks[i].num;
}
vv=min(50000,vv);
for(int i=1;i<=n;i++){
MultiplePack(cakes[i].energy,cakes[i].siz,cakes[i].amont,vv,dp1,1);
}
cc=min(cc,50000);
for(int i=1;i<=m;i++){
MultiplePack(trucks[i].cost,trucks[i].siz,trucks[i].num,cc,dp2,2);
}
int pos=0;
int tmp=INF;
for(int i=p;i<=vv;i++){
tmp=min(dp1[i],tmp);
}
for(int i=1;i<=cc;i++){
if(dp2[i]>=tmp){
pos=i; break;
}
}
if(pos==0){
printf("TAT\n");
}else{
printf("%d\n",pos);
}
}
return 0;
} /*
555
5 3 34
1 4 1
9 4 2
5 3 3
1 3 3
5 3 2
3 4 5
6 7 5
5 3 8 */

  

 

HDU 5445——Food Problem——————【多重背包】的更多相关文章

  1. hdu 5445 Food Problem 多重背包

    Food Problem Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5 ...

  2. Hdu 5445 Food Problem (2015长春网络赛 ACM/ICPC Asia Regional Changchun Online)

    题目链接: Hdu  5445 Food Problem 题目描述: 有n种甜点,每种都有三个属性(能量,空间,数目),有m辆卡车,每种都有是三个属性(空间,花费,数目).问至少运输p能量的甜点,花费 ...

  3. HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化)

    HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化) 题意分析 先把每种硬币按照二进制拆分好,然后做01背包即可.需要注意的是本题只需要求解可以凑出几种金钱的价格,而不需要输出种数 ...

  4. HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化)

    HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化) 题意分析 给出一系列的石头的数量,然后问石头能否被平分成为价值相等的2份.首先可以确定的是如果石头的价值总和为奇数的话,那 ...

  5. HDU 5445 Food Problem(多重背包+二进制优化)

    http://acm.hdu.edu.cn/showproblem.php?pid=5445 题意:现在你要为运动会提供食物,总共需要提供P能量的食物,现在有n种食物,每种食物能提供 t 能量,体积为 ...

  6. hdu 2844 Coins (多重背包)

    题意是给你几个数,再给你这几个数的可以用的个数,然后随机找几个数来累加, 让我算可以累加得到的数的种数! 解题思路:先将背包初始化为-1,再用多重背包计算,最后检索,若bb[i]==i,则说明i这个数 ...

  7. 题解报告:hdu 1059 Dividing(多重背包、多重部分和问题)

    Problem Description Marsha and Bill own a collection of marbles. They want to split the collection a ...

  8. hdu 1059 Dividing bitset 多重背包

    bitset做法 #include <bits/stdc++.h> #define PI acos(-1.0) #define mem(a,b) memset((a),b,sizeof(a ...

  9. HDU 2844 Coins(多重背包)

    点我看题目 题意 :Whuacmers有n种硬币,分别是面值为A1,A2,.....,An,每一种面值的硬币的数量分别是C1,C2,......,Cn,Whuacmers想买钱包,但是想给人家刚好的钱 ...

随机推荐

  1. leetcode笔记-1 twosum

    # -*- coding: utf-8 -*- #!/bin/env python # Python2.7 nums = [2, 4, 7, 0, 12, 6] print sorted(range( ...

  2. python并发编程之多进程1互斥锁与进程间的通信

    一.互斥锁 进程之间数据隔离,但是共享一套文件系统,因而可以通过文件来实现进程直接的通信,但问题是必须自己加锁处理. 注意:加锁的目的是为了保证多个进程修改同一块数据时,同一时间只能有一个修改,即串行 ...

  3. VMware Player 与 Device/Credential Guard 不兼容

    一.问题 当前:使用VMware Workstation 操作:安装docker 结果:电脑重启后,无法打开VMware Wokstation中的虚拟机 错误提示: 二.解决方案: 1. 控制面板-- ...

  4. ParentViewController中添加SubViewController(IOS学习)

    我是用的是Container.addSubView的方法. 1. ParentViewController.m的@interface()中添加2个子vc的实例变量,代码如下 @property (no ...

  5. Java核心技术 卷1 基础知识-第一天

    基本数据类型 java是一种强数据类的的语言 共有8种基本数据类型 其中: 整型4种 int(4字节) short(2字节) long(8字节) byte(1字节) java中整型的范围与机器无关 长 ...

  6. 9、perldoc文档阅读器

    转载:http://www.cnblogs.com/nkwy2012/p/6016320.html 一般来说,将文档的名称作为参数传递给perldoc命令,即可查阅该文档.比如下面,给定文档名称per ...

  7. miRNA

    MicroRNA (miRNA)  是一类内生的.长度约为20-24个核苷酸的小 RNA,其在细胞内具有多种重要的调节作用.每个 miRNA 可以有多个靶基因的表达,而几个 miRNA 也可以调节同一 ...

  8. Spring入门第五课

    集合属性 在Spring中可以通过一组内置的xml标签(如:<list>,<set>,<map>)来配置集合属性. 配置java.util.List类型的属性,需要 ...

  9. swift中的类拓展 extension

    以添加颜色为例,new 一个swift文件夹 不是cocoa类 也不需要继承什么. 然后 import UIKit protocol ColorDalegate{ class func mainCol ...

  10. Complex复数类——课堂作业

    代码: #include<iostream> #include<cmath> using namespace std; class Complex { public: Comp ...