Hive的所有数据都存在HDFS中.

(1)Table:每个表都对应在HDFS中的目录下,数据是经过序列化后存储在该目录中。同时Hive也支持表中的数据存储在其他类型的文件系统中,如NFS或本地文件系统。

(2)Partition(分区):Hive中的分区类似于RDBMS中的索引,每个Partition都有一个对应的目录,查询的时候可以减少数据的规模。

(3)Bucket(桶):即使将数据分区后,每个分区的规模可能依旧会很大,可以根据关键字的Hash结果将数据分成多个Bucket,每个Bucket对应一个文件。

HvieQL支持类似于SQL的查询语言,大体可分为以下几种类型.

DDL:类似于创建数据库(create database),创建表(create table),删除表(drop table)等.

DML:对于数据的查询(select)或添加(insert into overwrite)。

UDF:自定义查询函数。

Hive的整体架构图如下:

Hive拥有自己的语法树解析(Parser)、语义分析(Semantic Analyser)、以及查询优化器(Optimizer),最终以MapReduce的形式生成Job,交给Hadoop进行执行。项目开发中,由于Spark的Catalyst解析还太过简陋,一般声明对象时,还是用HiveContext.下面举个简单的例子:

import hiveContext._
val sqlContext = new org.apache.spark.sql.hive.HiveContext(sc)
sqlContext("create table yangsy (key int, value String)"
//将本地目录下的文件加载到HDFS的HIVE表中
sqlContext("load data local inpath '/home/coc/XXX.csv' into table yangsy")
//查询
sqlContext("From yangsy select key,value").collect().foreach(println)
sqlContext("drop table yangsy")

其实collect()函数已经过时。。。。但是为了触发action操作,就必须用,cache()函数只将运算后的数据存入内存,然而并没有什么卵用,因为它是transformation操作。

Spark对HiveQL所做的优化主要体现在Query相关的操作,其他的依旧使用Hive的原生执行引擎。在logicalPlan到physicalPlan的转换过程中,toRDD是最关键的。 源码如下:

override lazy val toRdd:RDD[Row] =
analyzed match{
case NativeCommand(cmd) =>
val output = runSqlHive(cmd)
if(output.size == 0){
emptyResult
}else{
val asRows = output.map(r => new GenericRow(r.split("\t".asInstanceOf[Array[Any]]))
sparkContext.parallelize(asRows,1)
}
case _ =>
executedPlan.execute().map(_.copy())
}

在Hive解析过程中增加了两个规则,分别是HiveTypeCoercion和PreInsertionCasts,其中要注意Catalog的用途,它是HiveMetastoreCatalog的实例。

HiveMetastoreCatalog是Spark中对Hive Metastore访问的wrapper.HiveMetastoreCatalog通过调用相应的Hive API可以获得数据库中的表及表的分区,也可创建表。它会通过Hive client来访问MetaStore的元数据。流程如下所示:

Hive:  hiveql -> queryExecutor ->HiveMetastoreCatalog ->MetaStore

SparkSQL: hiveql -> queryExecutor (toRDD)-> Spark RDDS -> HiveMetastoreCatalog ->MetaStore

Hive架构及Hive On Spark的更多相关文章

  1. 037 对于HIVE架构的理解

    0.发展 在hive公布源代码之后 公司又公布了presto,这个比较快,是基于内存的. impala:3s处理1PB数据. 1.Hive  能做什么,与 MapReduce 相比优势在哪里 关于hi ...

  2. hive学习(一)hive架构及hive3.1.1三种方式部署安装

    1.hive简介 logo 是一个身体像蜜蜂,头是大象的家伙,相当可爱. Hive是一个数据仓库基础工具在Hadoop中用来处理结构化数据.它架构在Hadoop之上,总归为大数据,并使得查询和分析方便 ...

  3. Hive架构原理

    什么是Hive Hive是由Facebook开源用于解决海量结构化日志的数据统计:Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射 成一张表,并提供类SQL查询功能,底层计算引 ...

  4. Hive(十三)【Hive on Spark 部署搭建】

    Hive on Spark 官网详情:https://cwiki.apache.org//confluence/display/Hive/Hive+on+Spark:+Getting+Started ...

  5. 对于HIVE架构的理解

    1.Hive  能做什么,与 MapReduce 相比优势在哪里 关于hive这个工具,hive学习成本低,入手快,对于熟悉sql语法的人来说,操作简单,熟悉. 2.为什么说 Hive 是 Hadoo ...

  6. Hive基础之Hive体系架构&运行模式&Hive与关系型数据的区别

    Hive架构 1)用户接口: CLI(hive shell):命令行工具:启动方式:hive 或者 hive --service cli ThriftServer:通过Thrift对外提供服务,默认端 ...

  7. Hive之 hive架构

    Hive架构图 主要分为以下几个部分: 用户接口,包括 命令行CLI,Client,Web界面WUI,JDBC/ODBC接口等 中间件:包括thrift接口和JDBC/ODBC的服务端,用于整合Hiv ...

  8. Hive架构

    Hive组织数据包含四种层次:DataBase --> Table --> Partition --> Bucket,对应在HDFS上都是文件夹形式. 数据库和数据仓库的区别: 1) ...

  9. 达观数据分析平台架构和Hive实践——TODO

    转自: http://www.infoq.com/cn/articles/hadoop-ten-years-part03 编者按:Hadoop于2006年1月28日诞生,至今已有10年,它改变了企业对 ...

随机推荐

  1. IOS请求H5页面、要求自定义agent判断是电脑、安卓还是iPhone登录

    //自定制的userAgent- (void)createMyAgent{        NSString *userAgent = [[[UIWebView alloc]init]stringByE ...

  2. <C Traps and Pitfalls>笔记

    //------------------------------------------------------------------------------ 2.1 理解函数的声明: 编写一个独立 ...

  3. javascript实现prim算法

    <script type="text/javascript"> //图的构建 function vnode() { this.visited = 0; this.ver ...

  4. COM ,Threading Models,apartments,RPC

    Component Object Model (COM) https://msdn.microsoft.com/en-us/library/windows/desktop/ms680573%28v=v ...

  5. 转-OpenJDK源码阅读导航跟编译

    OpenJDK源码阅读导航 OpenJDK源码阅读导航 博客分类: Virtual Machine HotSpot VM Java OpenJDK openjdk 这是链接帖.主体内容都在各链接中.  ...

  6. dir:一行代码,提取出所有视频文件名称及路径

    某次,部门接到一个任务,要求对公司现有的视频文件资料做一个统计整理分类的工作. 领导召集开会,问:两周时间够用吗? 统计整理分类工作的第一步骤是把视频文件名称来源类别信息录入到 excel 表格中,才 ...

  7. Unity3d 根据重力自动翻转

    玩游戏时,经常有这样的体验.我正常是左横屏,手机翻转过来为右横屏,游戏界面也随着翻转为右横屏. Unity3D引擎,不需要写任何代码,只需要 Player Setting 设置即可: 如图所示:

  8. easyUI之Combo

    Combo组件为自定义下拉列表组件,无class的加载方式,主要是通过jquery的方式.它依赖于validatebox,可以用它的很多属性.例如: 前台: <div id="box& ...

  9. asp.net如何确定是哪些控件验证失败

    Page.Validate("FeedBack"); if (!Page.IsValid) { foreach (IValidator validator in Validator ...

  10. shell之脚本练习

    脚本需求集合贴-自主开发的 对频繁执行的任务有编写脚本的价值 对单次执行的任务就用笨的,简单的办法 1.对asterisk写一个脚本 查日志 输入日期--能够输出对应日期的日志 输入多个条件--能够输 ...