各色Tarjan集合
#include<bits/stdc++.h>
using namespace std;
const int N=100000,M=200000;
//所有Tarjan都要:
// dfn[N],low[N],cnt=1,st,scc,zhan[N],top,前向星,vector<int>SCC[N]
//强连通 ,belong[N],inq[N]
//割边,边双 bridge[N], belong[N]
//点双,割点 cut[N],root
int dfn[N],low[N],cnt=1,zhan[N],top,st,belong[N],scc,head[N],root,n;
bool bridge[M],inq[N],cut[N];
vector <int>SCC[N];
struct bian
{
int nxt,to;
}b[M];
void add(int from,int to)
{
b[++cnt].nxt=head[from];
b[cnt].to=to;
head[from]=cnt;
}
void Tarjan1(int cur)//强连通
{
dfn[cur]=low[cur]=++st;
zhan[++top]=cur;inq[cur]=true;
int i=head[cur],v;
while(i!=0)
{
v=b[i].to;
if(dfn[v]==0)
{
Tarjan1(v);
low[cur]=min(low[cur],low[v]);
}
else
{
if(inq[v]==true)
{
low[cur]=min(low[cur],dfn[v]);
}
}
i=b[i].nxt;
}
if(low[cur]==dfn[cur])
{
scc++;
int ding;
do
{
ding=zhan[top];
inq[ding]=false;
zhan[top--]=0;
belong[ding]=scc;
SCC[scc].push_back(ding);
}while(ding!=cur);
}
}
void Tarjan2(int cur,int pre)//割边,边双
{
dfn[cur]=low[cur]=++st;
zhan[++top]=cur;
int i=head[cur],v;
while(i!=0)
{
v=b[i].to;
if(i!=pre)
{
if(dfn[v]==0)
{
Tarjan2(v,i^1);
low[cur]=min(low[cur],low[v]);
if(low[v]>dfn[cur])
{
bridge[i]=bridge[i^1]=true;
scc++;
int ding;
do
{
ding=zhan[top];
zhan[top--]=0;
belong[ding]=scc;
SCC[scc].push_back(ding);
}while(ding!=v);
}
}
else
low[cur]=min(low[cur],dfn[v]);
}
i=b[i].nxt;
}
}
void Tarjan3(int cur)
{
dfn[cur]=low[cur]=++st;
zhan[++top]=cur;
int i=head[cur],v,child=0;
while(i!=0)
{
v=b[i].to;
if(dfn[v]==0)
{
child++;
Tarjan3(v);
low[cur]=min(low[cur],low[v]);
if(low[v]>=dfn[cur])
{
if(root!=cur)
cut[cur]=true;
scc++;
int ding;
do
{
ding=zhan[top];
zhan[top--]=0;
SCC[scc].push_back(ding);
}while(ding!=v);
SCC[scc].push_back(cur);
}
}
else
low[cur]=min(low[cur],dfn[v]);
i=b[i].nxt;
}
if(cur==root&&child>=2)
{
cut[cur]=true;
}
}
int main()
{
for(int i=1;i<=n;i++)
{
if(dfn[i]==0)
Tarjan1(i);
if(dfn[i]==0)
{
Tarjan2(i,0);
int ding;
while(top>0)
{
ding=zhan[top];
zhan[top--]=0;
SCC[scc].push_back(ding);
}
}
if(dfn[i]==0)
root=i,Tarjan3(i);
}
return 0;
}
特殊点:
强连通的出栈在函数末,进入条件low[cur]=dfn[cur],break条件ding!=cur,注意要维护是否在栈中的数组inq,dfn[v]!=0且inq[v]==true时,才能进入else语句中更新low[cur];
边双和割边出栈在Tarjan过程中的dfn[v]=0中,判断是low[v]>dfn[cur],break条件ding!=v,结束后要清栈;
割点和点双联通在Tarjan过程中的dfn[v]=0中,判断是low[v]>=dfn[cur],break条件ding!=v,注意求割点时,若cur=root且child>=2,为割点;
各色Tarjan集合的更多相关文章
- Tarjan算法详解理解集合
[功能] Tarjan算法的用途之一是,求一个有向图G=(V,E)里极大强连通分量.强连通分量是指有向图G里顶点间能互相到达的子图.而如果一个强连通分量已经没有被其它强通分量完全包含的话,那么这个强连 ...
- tarjan讲解(用codevs1332(tarjan的裸题)讲解)
主要借助这道比较裸的题来讲一下tarjan这种算法 tarjan是一种求解有向图强连通分量的线性时间的算法.(用dfs来实现) 如果两个顶点可以相互通达,则称两个顶点强连通.如果有向图G的每两个顶点都 ...
- POJ 1236 Network of Schools(Tarjan缩点)
Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 16806 Accepted: 66 ...
- Tarjan应用:求割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)【转】【修改】
一.基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成 ...
- 【POJ 3062】Party(2-SAT、tarjan)
2-SAT的入门题. a,a',b,b'分别表示两对夫妇,如果a,b有矛盾,那么a要来,就只能来b',b要来,就只能来a'.于是建了两条边(a,b'),(b,a'). 用tarjan强连通分量缩点染色 ...
- (转载)LCA问题的Tarjan算法
转载自:Click Here LCA问题(Lowest Common Ancestors,最近公共祖先问题),是指给定一棵有根树T,给出若干个查询LCA(u, v)(通常查询数量较大),每次求树T中两 ...
- 强连通分量的Tarjan算法
资料参考 Tarjan算法寻找有向图的强连通分量 基于强联通的tarjan算法详解 有向图强连通分量的Tarjan算法 处理SCC(强连通分量问题)的Tarjan算法 强连通分量的三种算法分析 Tar ...
- Code[VS] 1332 题解 【Kosaraju】【Tarjan】
Code[VS] 1332 上白泽慧音题解 Tarjan Algorithm Kosaraju Algorithm 题目传送门:http://codevs.cn/problem/1332/ 题目描 ...
- UVAoj 11324 - The Largest Clique(tarjan + dp)
题意:给定一个有向图,寻找一个点数最大集合,使得这个集合中的任意两个点 u,v, 都有u->v 或者 v->u 或者u<==>v 思路:首先将强连通分量通过tarjan算法求出 ...
随机推荐
- 文件上传靶机DVWA和upload-labs
DVWA靶机 LOW <?php phpinfo() ?> 上传文件 Medium级别 修改Content-Type: application/octet-stream的值为jpg的格式为 ...
- Docker 网络解读
Docker 容器在运行时,会涉及多个容器相互连接,甚至与宿主机上的应用连接的问题.既然需要产生连接,那么就必然要依赖网络. 网络在Docker的技术体系中,是一个不容易搞清楚的要点.因此,希望您读完 ...
- RESTful API 设计风格
HTTP常用动词 GET(SELECT):从服务器取出资源(一项或多项). POST(CREATE):在服务器新建一个资源. PUT(UPDATE):在服务器更新资源(客户端提供改变后的完整资源). ...
- Java流程控制05——循环结构
循环结构 while 循环 while(布尔表达式){ //循环语句 } 只要布尔表达式为true,循环就会一直执行下去. 我们为你大多数情况是会让循环停止下来的,我们需要让一个表达式时效的方式 ...
- 3D性能优化 | 说一说glTF文件压缩
引言 最近做T级互动,需要使用到3D模型.相信大家和我一样,在开始着手的时候,一定会有这么些问题: 1.如何选择3D模型的导出格式 2.如何对模型文件进行优化 3.在大流量的项目中兼容性怎么样 让我们 ...
- Docker入门第三章
配置阿里云镜像加速器 1.首先打开阿里云,搜索容器镜像服务,打开如下 2.配置镜像加速器 sudo mkdir -p /etc/docker sudo tee /etc/docker/daemon.j ...
- Linux命令(五)之service服务查找、启动/停止等相关操作
.personSunflowerP { background: rgba(51, 153, 0, 0.66); border-bottom: 1px solid rgba(0, 102, 0, 1); ...
- CF上部分树形DP练习题
本次 5 道题均来自Codeforce 关于树形DP的算法讲解:Here 791D. Bear and Tree Jumps 如果小熊每次能跳跃的距离为1,那么问题变为求树上任意两点之间距离之和. 对 ...
- CleanArchitecture Application代码生成插件-让程序员告别CURD Ctrl+C Ctrl+V
这是一个根据Domain项目中定义的实体对象(Entity)生成符合Clean Architecture原则的Application项目所需要的功能代码,包括常用的Commands,Queries,V ...
- kali虚拟机安装VMTools、更新源、安装docker、配置sqli-labs
一.安装VMTools: 传送门:关于安装VMTools 跟其他版本的虚拟机安装VMTools没什么区别,也得连网(我是kali用dhcp开nat模式) 之后按照上面的链接根据博主的步骤一步一步来即可 ...