题目链接

题意:\(n\) 个数,每个数都在 \([1,c]\) 中,\(m\) 次询问,每次问在 \([l,r]\) 中有多少个数出现偶数次。强制在线。

\(1 \leq n,m,c \leq 10^5\)

如果不强制在线的话可以想到莫队,关键这个强制在线怎么处理。

很容易想到对原数列进行根号分块,为了方便表示,定义 \(L_i\) 为第 \(i\) 块的左端点,\(R_i\) 为第 \(i\) 块的右端点。

我们记 \(t_{i,j}\) 表示在 \([L_i,n]\) 中 \(j\) 这个数出现了多少次,\(f_{i,j}\) 表示在 \([L_i,R_j]\) 有多少个数出现次数为偶数。

我还是太 naive 了,一看到这个“区间”就想着用区间 dp 的方式进行转移,复杂度爆炸。

事实上,我们可以在求出 \(t\) 的同时求出 \(f\)。枚举起点块 \(i\),定义 \(num\) 记录有多少个数出现了偶数次,一边往后扫一遍更新 \(num\)。

查询区间 \([l,r]\) 的时候,如果 \(l,r\) 在同一块中,直接暴力查找就行了。

如果 \([l,r]\) 不在同一块中,记 \(l'\) 为 \(l\) 所在的块,\(r'\) 为 \(r\) 所在的块,那么我们先将 \(ans\) 赋值为 \(f_{l'+1,r'-1}\),然后对于 \([l,R_{l'}] \cup [L_{r'},r]\) 中所有不同的数 \(x\),分出以下三种情况:

  1. \(x\) 在 \([L_{l'+1},R_{r'-1}]\) 中出现次数为不为零的偶数,但是在 \([l,r]\) 中出现次数为奇数,则表明它被算在了 \(ans\) 中,但实际不符合条件,让 \(ans\) 减一
  2. \(x\) 在 \([L_{l'+1},R_{r'-1}]\) 中出现次数奇数,但是在 \([l,r]\) 中出现次数为偶数,则表明它没有被算在了 \(ans\) 中,但实际符合条件,让 \(ans\) 加一
  3. \(x\) 在 \([L_{l'+1},R_{r'-1}]\) 中没出现过,但是在 \([l,r]\) 中出现次数为偶数,让 \(ans\) 加 \(1\)。
//Coded by tzc_wk
/*
数据不清空,爆零两行泪。
多测不读完,爆零两行泪。
边界不特判,爆零两行泪。
贪心不证明,爆零两行泪。
D P 顺序错,爆零两行泪。
大小少等号,爆零两行泪。
变量不统一,爆零两行泪。
越界不判断,爆零两行泪。
调试不注释,爆零两行泪。
溢出不 l l,爆零两行泪。
*/
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fz(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define foreach(it,v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
#define all(a) a.begin(),a.end()
#define giveup(...) return printf(__VA_ARGS__),0;
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,0x3f,sizeof(a))
#define fillsmall(a) memset(a,0xcf,sizeof(a))
#define mask(a) (1ll<<(a))
#define maskx(a,x) ((a)<<(x))
#define _bit(a,x) (((a)>>(x))&1)
#define _sz(a) ((int)(a).size())
#define filei(a) freopen(a,"r",stdin);
#define fileo(a) freopen(a,"w",stdout);
#define fileio(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout)
#define eprintf(...) fprintf(stderr,__VA_ARGS__)
#define put(x) putchar(x)
#define eoln put('\n')
#define space put(' ')
#define y1 y_chenxiaoyan_1
#define y0 y_chenxiaoyan_0
typedef pair<int,int> pii;
inline int read(){
int x=0,neg=1;char c=getchar();
while(!isdigit(c)){
if(c=='-') neg=-1;
c=getchar();
}
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x*neg;
}
inline void print(int x){
if(x<0){
putchar('-');
print(abs(x));
return;
}
if(x<=9) putchar(x+'0');
else{
print(x/10);
putchar(x%10+'0');
}
}
inline int qpow(int x,int e,int _MOD){
int ans=1;
while(e){
if(e&1) ans=ans*x%_MOD;
x=x*x%_MOD;
e>>=1;
}
return ans;
}
const int BLOCK_SZ=320;
int n=read(),c=read(),m=read(),a[100005],cnt[322][100005],sum[322][322];
int blk,L[322],R[322],bel[100005];
int vis[100005];
inline void prework(){
blk=(n-1)/BLOCK_SZ+1;
fz(i,1,blk){
L[i]=(i-1)*BLOCK_SZ+1;
R[i]=min(i*BLOCK_SZ,n);
fz(j,L[i],R[i]){
bel[j]=i;
}
}
fz(i,1,blk){
int num=0;
fill0(vis);
fz(j,L[i],n){
cnt[i][a[j]]++;
if(!vis[a[j]]) vis[a[j]]=1,num++;
if(cnt[i][a[j]]&1) num--;
else num++;
if(bel[j]!=bel[j+1]) sum[i][bel[j]]=num;
}
}
}
int cntt[100005];
inline int query(int l,int r){
if(bel[l]==bel[r]){
int ans=0;
fz(i,l,r) cntt[a[i]]++;
fz(i,l,r){
if(!vis[a[i]]){
if(cntt[a[i]]&1^1) ans++;
vis[a[i]]=1;
}
}
fz(i,l,r) cntt[a[i]]--,vis[a[i]]=0;
return ans;
}
else{
int l0=bel[l],r0=bel[r];
fz(i,l,R[l0]) cntt[a[i]]++;
fz(i,L[r0],r) cntt[a[i]]++;
int ans=sum[l0+1][r0-1];
fz(i,l,R[l0]){
if(!vis[a[i]]){
if((cnt[l0+1][a[i]]-cnt[r0][a[i]])>0){
if(((cntt[a[i]]+cnt[l0+1][a[i]]-cnt[r0][a[i]])&1^1)&&(cnt[l0+1][a[i]]-cnt[r0][a[i]])&1)
ans++;
if(((cntt[a[i]]+cnt[l0+1][a[i]]-cnt[r0][a[i]])&1)&&(cnt[l0+1][a[i]]-cnt[r0][a[i]])&1^1)
ans--;
}
else{
if((cntt[a[i]]&1)^1) ans++;
}
vis[a[i]]=1;
}
}
fz(i,L[r0],r){
if(!vis[a[i]]){
if((cnt[l0+1][a[i]]-cnt[r0][a[i]])>0){
if(((cntt[a[i]]+cnt[l0+1][a[i]]-cnt[r0][a[i]])&1^1)&&(cnt[l0+1][a[i]]-cnt[r0][a[i]])&1)
ans++;
if(((cntt[a[i]]+cnt[l0+1][a[i]]-cnt[r0][a[i]])&1)&&(cnt[l0+1][a[i]]-cnt[r0][a[i]])&1^1)
ans--;
}
else{
if(cntt[a[i]]&1^1) ans++;
}
vis[a[i]]=1;
}
}
fz(i,l,R[l0]) cntt[a[i]]--,vis[a[i]]=0;
fz(i,L[r0],r) cntt[a[i]]--,vis[a[i]]=0;
return ans;
}
}
signed main(){
fz(i,1,n) a[i]=read();
prework();
fill0(vis);
int anss=0;
while(m--){
int l=read(),r=read();
l=(l+anss)%n+1,r=(r+anss)%n+1;
if(l>r) swap(l,r);
anss=query(l,r);
cout<<anss<<endl;
}
return 0;
}

洛谷 P4135 作诗(分块)的更多相关文章

  1. 洛谷P4135 作诗 (分块)

    洛谷P4135 作诗 题目描述 神犇SJY虐完HEOI之后给傻×LYD出了一题: SHY是T国的公主,平时的一大爱好是作诗. 由于时间紧迫,SHY作完诗之后还要虐OI,于是SHY找来一篇长度为N的文章 ...

  2. 洛谷 P4135 作诗 题解

    题面. 之前做过一道很类似的题目 洛谷P4168蒲公英 ,然后看到这题很快就想到了解法,做完这题可以对比一下,真的很像. 题目要求区间内出现次数为正偶数的数字的数量. 数据范围1e5,可以分块. 我们 ...

  3. 洛谷P4135 作诗(不一样的分块)

    题面 给定一个长度为 n n n 的整数序列 A A A ,序列中每个数在 [ 1 , c ] [1,c] [1,c] 范围内.有 m m m 次询问,每次询问查询一个区间 [ l , r ] [l, ...

  4. 洛谷P4135 作诗

    题意:[l,r]之间有多少个数出现了正偶数次.强制在线. 解:第一眼想到莫队,然后发现强制在线...分块吧. 有个很朴素的想法就是蒲公英那题的套路,做每块前缀和的桶. 然后发现这题空间128M,数组大 ...

  5. 洛谷 P4135 作诗

    分块大暴力,跟区间众数基本一样 #pragma GCC optimize(3) #include<cstdio> #include<algorithm> #include< ...

  6. P4135 作诗——分块

    题目:https://www.luogu.org/problemnew/show/P4135 分块大法: 块之间记录答案,每一块记录次数前缀和: 注意每次把桶中需要用到位置赋值就好了: 为什么加了特判 ...

  7. 洛谷P4198 楼房重建 (分块)

    洛谷P4198 楼房重建 题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题, ...

  8. 洛谷P3247 [HNOI2016]最小公倍数 [分块,并查集]

    洛谷 思路 显然,为了达到这个最小公倍数,只能走\(a,b\)不是很大的边. 即,当前询问的是\(A,B\),那么我们只能走\(a\leq A,b\leq B\)的边. 然而,为了达到这最小公倍数,又 ...

  9. 洛谷P4135 Ynoi2016 掉进兔子洞 (带权bitset?/bitset优化莫队 模板) 题解

    题面. 看到这道题,我第一反应就是莫队. 我甚至也猜出了把所有询问的三个区间压到一起处理然后分别计算对应询问答案. 但是,这么复杂的贡献用什么东西存?难道要开一个数组 query_appear_tim ...

随机推荐

  1. FastAPI 学习之路(三十八)Static Files

    如果使用前后台不分离的开发方式,那么模板文件中使用的静态文件,比如css/js等文件的目录需要在后台进行配置,以便模板渲染是能正确读到这些静态文件.那么我们应该如何处理呢. 首先安装依赖 pip in ...

  2. ORA-19815: WARNING: db_recovery_file_dest_size闪回区爆满问题处理

    问题描述:有一个数据库起不来了,根据层层排查,是因为归档设置在了闪回区,文件的大小已经超出了闪回区限制.最后直接给数据库拖挂 环境:windows server2012 , oracle 19c,单机 ...

  3. 【UE4】虚幻引擎技术直播汇总(含中英文直播)

    B站虚幻引擎官方账号 中文直播 [中文直播]第35期 | 使用GIS在UE中创造真实地球风貌 | Epic 周澄清 [中文直播]第34期 | 包教包会的Epic MegaGrants申请之道 | Ep ...

  4. 利用 pip 安装 Python 程序包到个人用户文件夹下

    利用 --user 参数,即 pip install --user package_name 这样会将Python 程序包安装到 $HOME/.local 路径下,其中包含三个字文件夹:bin,lib ...

  5. UltraSoft - Beta - Scrum Meeting 11

    Date: May 27th, 2020. Scrum 情况汇报 进度情况 组员 负责 今日进度 q2l PM.后端 记录会议 Liuzh 前端 增加了对重复日程的支持 Kkkk 前端 测试验证前后端 ...

  6. python3中的bytes和string

    原文链接:https://www.cnblogs.com/abclife/p/7445222.html python 3中最重要的新特性可能就是将文本(text)和二进制数据做了更清晰的区分.文本总是 ...

  7. 必备的60个常用的Linux命令

    Linux必学的60个命令Linux提供了大量的命令,利用它可以有效地完成大量的工 作,如磁盘操作.文件存取.目录操作.进程管理.文件权限设定等.所以,在Linux系统上工作离不开使用系统提供的命令. ...

  8. Exynos4412 中断处理流程详解

    Linux 中,当外设触发中断后,大体处理流程如下: a -- 具体CPU architecture相关的模块会进行现场保护,然后调用machine driver对应的中断处理handler; b - ...

  9. 嵌入式单片机stm32之DMA实验

    一. 对于大容量的STM32芯片有2个DMA控制器,控制器1有7个通道,控制器2有5个通道 每个通道都可以配置一些外设的地址. 二. 通道的配置过程: 1. 首先设置CPARx寄存器和CMARx寄存器 ...

  10. 数组中只出现过一次的数字 牛客网 剑指Offer

    数组中只出现过一次的数字 牛客网 剑指Offer 题目描述 一个整型数组里除了两个数字之外,其他的数字都出现了偶数次.请写程序找出这两个只出现一次的数字. def FindNumsAppearOnce ...