1.1.10. Bayesian Ridge Regression

首先了解一些背景知识:from: https://www.r-bloggers.com/the-bayesian-approach-to-ridge-regression/

In this post, we are going to be taking a computational approach to demonstrating the equivalence of the bayesian approach and ridge regression.

From: 文本语言模型的参数估计-最大似然估计、MAP及贝叶斯估计

三类参数估计方法:最大似然估计MLE最大后验概率估计MAP贝叶斯估计

最大似然估计MLE

关键:写出似然函数

最大后验概率估计MAP

最大后验估计与最大似然估计相似,不同点在于估计的函数中允许加入一个先验,也就是说此时不是要求似然函数最大,而是要求由贝叶斯公式计算出的整个后验概率最大,即

注意这里P(X)与参数无关,因此等价于要使分子最大。与最大似然估计相比,现在需要多加上一个先验分布概率的对数。

【在样本足够大时,结果逼近MLE】

【加了先验没什么神秘的,效果很类似l正则项】

贝叶斯估计

贝叶斯估计是在MAP上做进一步拓展,此时不直接估计参数的值,而是允许参数服从一定概率分布。回顾一下贝叶斯公式

现在不是要求后验概率最大,这样就需要求,即观察到的evidence的概率,由全概率公式展开可得

当新的数据被观察到时,后验概率可以自动随之调整。但是通常这个全概率的求法是贝叶斯估计比较有技巧性的地方。

那么如何用贝叶斯估计来做预测呢?如果我们想求一个新值的概率,可以由

来计算。注意此时第二项因子在上的积分不再等于1,这就是和MLE及MAP很大的不同点。

我们仍然以扔硬币的伯努利实验为例来说明。和MAP中一样,我们假设先验分布为Beta分布,

但是构造贝叶斯估计时,

    • 不是要求用后验最大时的参数来近似作为参数值,
    • 而是求满足Beta分布的参数p的期望,有

注意这里用到了公式

当T为二维的情形可以对Beta分布来应用;T为多维的情形可以对狄利克雷分布应用

根据结果可以知道,根据贝叶斯估计,参数p服从一个新的Beta分布。回忆一下,我们为p选取的先验分布是Beta分布,然后以p为参数的二项分布用贝叶斯估计得到的后验概率仍然服从Beta分布,由此我们说二项分布和Beta分布是共轭分布。在概率语言模型中,通常选取共轭分布作为先验,可以带来计算上的方便性。最典型的就是LDA中每个文档中词的Topic分布服从Multinomial分布,其先验选取共轭分布即Dirichlet分布;每个Topic下词的分布服从Multinomial分布,其先验也同样选取共轭分布即Dirichlet分布。

根据Beta分布的期望和方差计算公式,我们有

可以看出此时估计的p的期望和MLE ,MAP中得到的估计值都不同,此时如果仍然是做20次实验,12次正面,8次反面,那么我们根据贝叶斯估计得到的p满足参数为12+5和8+5的Beta分布,其均值和方差分别是17/30=0.567, 17*13/(31*30^2)=0.0079。可以看到此时求出的p的期望比MLE和MAP得到的估计值都小,更加接近0.5。

结论:

综上所述我们可以可视化MLE,MAP和贝叶斯估计对参数的估计结果如下

个人理解是,从MLE到MAP再到贝叶斯估计,对参数的表示越来越精确【应该是表达越来越丰富,毕竟由一个值变为了一个分布,减少了推断过程中信息的损失】,得到的参数估计结果也越来越接近0.5这个先验概率,越来越能够反映基于样本的真实参数情况。【一般都用贝叶斯估计】

链接:https://www.zhihu.com/question/22007264/answer/20014371

过去的线性归回,比如使用最小二乘,其实就是相当于最大似然的感觉,容易overfitting。

采用了贝叶斯,假设了高斯分布,也就等价于Ridge Regression。

如果假设是拉普拉斯分布,就等价于LASSO。

Train:

>>> from sklearn import linear_model
>>> X = [[0., 0.], [1., 1.], [2., 2.], [3., 3.]]
>>> Y = [0., 1., 2., 3.]
>>> reg = linear_model.BayesianRidge()
>>> reg.fit(X, Y)
BayesianRidge(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True,
fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300,
normalize=False, tol=0.001, verbose=False)

Predict:

>>> reg.predict ([[1, 0.]])
array([ 0.50000013])

Demo: 

 

[Scikit-learn] 1.1 Generalized Linear Models - Bayesian Ridge Regression的更多相关文章

  1. [Scikit-learn] 1.5 Generalized Linear Models - SGD for Regression

    梯度下降 一.亲手实现“梯度下降” 以下内容其实就是<手动实现简单的梯度下降>. 神经网络的实践笔记,主要包括: Logistic分类函数 反向传播相关内容 Link: http://pe ...

  2. Regression:Generalized Linear Models

    作者:桂. 时间:2017-05-22  15:28:43 链接:http://www.cnblogs.com/xingshansi/p/6890048.html 前言 本文主要是线性回归模型,包括: ...

  3. Generalized Linear Models

    作者:桂. 时间:2017-05-22  15:28:43 链接:http://www.cnblogs.com/xingshansi/p/6890048.html 前言 主要记录python工具包:s ...

  4. 广义线性模型(Generalized Linear Models)

    前面的文章已经介绍了一个回归和一个分类的例子.在逻辑回归模型中我们假设: 在分类问题中我们假设: 他们都是广义线性模型中的一个例子,在理解广义线性模型之前需要先理解指数分布族. 指数分布族(The E ...

  5. Andrew Ng机器学习公开课笔记 -- Generalized Linear Models

    网易公开课,第4课 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 前面介绍一个线性回归问题,符合高斯分布 一个分类问题,logstic回 ...

  6. [Scikit-learn] 1.1 Generalized Linear Models - from Linear Regression to L1&L2

    Introduction 一.Scikit-learning 广义线性模型 From: http://sklearn.lzjqsdd.com/modules/linear_model.html#ord ...

  7. [Scikit-learn] 1.5 Generalized Linear Models - SGD for Classification

    NB: 因为softmax,NN看上去是分类,其实是拟合(回归),拟合最大似然. 多分类参见:[Scikit-learn] 1.1 Generalized Linear Models - Logist ...

  8. [Scikit-learn] 1.1 Generalized Linear Models - Logistic regression & Softmax

    二分类:Logistic regression 多分类:Softmax分类函数 对于损失函数,我们求其最小值, 对于似然函数,我们求其最大值. Logistic是loss function,即: 在逻 ...

  9. Popular generalized linear models|GLMM| Zero-truncated Models|Zero-Inflated Models|matched case–control studies|多重logistics回归|ordered logistics regression

    ============================================================== Popular generalized linear models 将不同 ...

随机推荐

  1. sqlmap中文帮助文档

    Options(选项):  -h,--help             显示基本帮助消息并退出  -hh                     显示高级帮助消息并退出  --version      ...

  2. 2.Vue调试工具vue-devtools的安装步骤和使用

    1.安装步骤: 打开谷歌浏览器设置 -->扩展程序 -->勾选开发者模式 --->加载已解压的扩展程序 --->选择“chrome扩展”文件夹即可:

  3. 用js刷剑指offer(二维数组中的查找)

    题目描述 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数 ...

  4. 巧用linux云服务器下的的/dev/shm/,避开磁盘IO不给力!

    巧用linux云服务器下的的/dev/shm/,避开磁盘IO不给力! 一.什么是tmpfs和/dev/shm/? tmpfs是Linux/Unix系统上的一种基于内存的文件系统.tmpfs可以使用您的 ...

  5. JDK源码那些事儿之红黑树基础上篇

    说到HashMap,就一定要说到红黑树,红黑树作为一种自平衡二叉查找树,是一种用途较广的数据结构,在jdk1.8中使用红黑树提升HashMap的性能,今天就来说一说红黑树. 前言 限于篇幅,本文只对红 ...

  6. PHP 获取上传文件的实际类型

    方案一: mime_content_type ( string $filename ) : string (PHP 4 >= 4.3.0, PHP 5, PHP 7) mime_content_ ...

  7. Lua 学习之基础篇六<Lua IO 库>

    引言 I/O 库提供了两套不同风格的文件处理接口. 第一种风格使用隐式的文件句柄: 它提供设置默认输入文件及默认输出文件的操作, 所有的输入输出操作都针对这些默认文件. 第二种风格使用显式的文件句柄. ...

  8. groovy http

    import groovy.json.JsonOutput void api(){ def data = [jobId : "11111111111111", data : 5,s ...

  9. 2019HDU多校第三场F Fansblog——威尔逊定理&&素数密度

    题意 给定一个整数 $P$($10^9 \leq p\leq 1^{14}$),设其前一个质数为 $Q$,求 $Q!  \ \% P$. 分析 暴力...说不定好的板子能过. 根据威尔逊定理,如果 $ ...

  10. java 正则《转载》

    Java 正则表达式 正则表达式定义了字符串的模式. 正则表达式可以用来搜索.编辑或处理文本. 正则表达式并不仅限于某一种语言,但是在每种语言中有细微的差别. 正则表达式实例 一个字符串其实就是一个简 ...