pandas.DataFrame.to_hdf(self, path_or_buf, key, **kwargs):

Hierarchical Data Format (HDF) ,to add another DataFrame or Series to an existing HDF file, please use append mode and a different a key.

df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]},  index=['a', 'b', 'c'])
df.to_hdf('data.h5', key='df', mode='w', format='table')
# format : {‘fixed’, ‘table’}, default ‘fixed’
# ‘fixed’: Fixed format. Fast writing/reading. Not-appendable, nor searchable
# ‘table’: Table format. Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data
s = pd.Series([1, 2, 3, 4])
s.to_hdf('data.h5', key='s') pd.read_hdf('data.h5', 'df')
pd.read_hdf('data.h5', 's')

tqdm模块显示进度条:

tqdm(self, iterable=None, desc=None, total=None, leave=True, file=None, ncols=None, mininterval=0.1, maxinterval=10.0, miniters=None, ascii=None, disable=False, unit='it', unit_scale=False, dynamic_ncols=False, smoothing=0.3, bar_format=None, initial=0, position=None, postfix=None, unit_divisor=1000, write_bytes=None, gui=False, **kwargs)

iterable : iterable, optional

total : int, optional. The number of expected iterations. If unspecified, len(iterable) is used if possible.

for x in tqdm(train_df['request_timestamp'].values,total=len(train_df)):
localtime=time.localtime(x)
wday.append(localtime[6])
hour.append(localtime[3])

https://lorexxar.cn/2016/07/21/python-tqdm/

https://tqdm.github.io/docs/tqdm/

pandas.DataFrame.nuniquehttps://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.nunique.html

DataFrame.nunique(selfaxis=0dropna=True)

Count distinct observations over requested axis. Return Series with number of distinct observations. Can ignore NaN values.

>>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [1, 1, 1]})
>>> df
A B
0 1 1
1 2 1
2 3 1
>>> df.nunique()
A 3
B 1
dtype: int64
>>> df.nunique(axis=1)
0 1
1 2
2 2
dtype: int64

pandas.read_csv:

pandas.read_csv(...)常见参数:

sep : str, default ‘,’

header : int, list of int, default ‘infer’. Row number(s) to use as the column names, and the start of the data. Default behavior is to infer the column names: if no names are passed the behavior is identical to header=0 and column names are inferred from the first line of the file, if column names are passed explicitly then the behavior is identical to header=None.

names : array-like, optional. List of column names to use.  Duplicates in this list are not allowed.

df=pd.read_csv('data/testA/totalExposureLog.out', sep='\t',names=['id','request_timestamp','position','uid','aid','imp_ad_size','bid','pctr','quality_ecpm','totalEcpm'])

pandas.DataFrame.sort_values:

DataFrame.sort_values(self, by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last')
# axis这个参数的默认值为0,匹配的是index,跨行进行排序,当axis=1时,匹配的是columns,跨列进行排序
# by这个参数要求传入一个字符或者是一个字符列表,用来指定按照axis的中的哪个元素来进行排序
# ascending这个参数的默认值是True,按照升序排序,当传入False时,按照降序进行排列
# kind这个参数表示按照什么样算法来进行排序,默认值是quicksort(快速排序),也可以传入mergesort(归并排序)或者是heapsort(堆排序) df.sort_values(by='col1')
df.sort_values(by=['col1', 'col2'])

pandas.DataFrame.astype:

DataFrame.astype(self, dtype, copy=True, errors='raise', **kwargs)
# dtype : data type, or dict of column name
# Use a numpy.dtype or Python type to cast entire pandas object to the same type. Alternatively, use {col: dtype, …}, where col is a column label and dtype is a numpy.dtype or Python type to cast one or more of the DataFrame’s columns to column-specific types. d = {'col1': [1, 2], 'col2': [3, 4]}
df = pd.DataFrame(data=d)
df.dtypes df.astype('int32').dtypes
df.astype({'col1': 'int32'}).dtypes

pandas.DataFrame.fillna

DataFrame.fillna(self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)
# fillna()会填充nan数据,返回填充后的结果。如果希望在原DataFrame中修改,则把inplace设置为True

hdf5文件、tqdm模块、nunique、read_csv、sort_values、astype、fillna的更多相关文章

  1. (数据科学学习手札63)利用pandas读写HDF5文件

    一.简介 HDF5(Hierarchical Data Formal)是用于存储大规模数值数据的较为理想的存储格式,文件后缀名为h5,存储读取速度非常快,且可在文件内部按照明确的层次存储数据,同一个H ...

  2. 使用h5py操作hdf5文件

    HDF(Hierarchical Data Format)指一种为存储和处理大容量科学数据设计的文件格式及相应库文件.HDF 最早由美国国家超级计算应用中心 NCSA 开发,目前在非盈利组织 HDF ...

  3. 【Python 代码】生成hdf5文件

    import random from PIL import Image import numpy as np import os import h5py from PIL import Image L ...

  4. 使用python操作HDF5文件

    HDF Hierarchical Data Format,又称HDF5 在深度学习中,通常会使用巨量的数据或图片来训练网络.对于如此大的数据集,如果对于每张图片都单独从硬盘读取.预处理.之后再送入网络 ...

  5. nodejs零基础详细教程2:模块化、fs文件操作模块、http创建服务模块

    第二章  建议学习时间4小时  课程共10章 学习方式:详细阅读,并手动实现相关代码 学习目标:此教程将教会大家 安装Node.搭建服务器.express.mysql.mongodb.编写后台业务逻辑 ...

  6. 【Python系列】HDF5文件介绍

    一个HDF5文件是一种存放两类对象的容器:dataset和group. Dataset是类似于数组的数据集,而group是类似文件夹一样的容器,存放dataset和其他group.在使用h5py的时候 ...

  7. c++ 读取不了hdf5文件中的字符串

    问题描述: 在拿到一个hdf5文件,想用c++去读取文件中的字符串,但是会报错:read failed ps: c++读取hdf5的字符串方法见:https://support.hdfgroup.or ...

  8. 关于php,python,javascript文件或者模块导入引入的区别和联系

    前言: 我们经常看到编程语言之间,文件或者模块的引来引去的,但是他们在各个编程语言之间有什么区别和联系呢? 1.javascript (1).全局引入方式: <script src='xxxxx ...

  9. Tornado源码分析 --- 静态文件处理模块

    每个web框架都会有对静态文件的处理支持,下面对于Tornado的静态文件的处理模块的源码进行分析,以加强自己对静态文件处理的理解. 先从Tornado的主要模块 web.py 入手,可以看到在App ...

随机推荐

  1. mysql对数据的操作

    增: insert into 表名(字段,字段,字段) values(值,值,值): insert into 表名 values(值,值,值): insert into 表名 set 字段=值, 字段 ...

  2. Go语言中方法和函数的区别

    今天看<Go语言实战>发现方法和函数不太一样,写的格式不一样,用法也不一样.所以记一次笔记. 在Go语言中,函数和方法不太一样,有明确的概念区分.其他语言中,比如Java,一般来说,函数就 ...

  3. GIP画图

    世界坐标:相对于winform窗体来说的, 页面坐标:相对于控件的 设置坐标:相对于显示器 获得Graphics对象一般有两种方式: 1.控件.CreateGraphics();//通过该方式创建后要 ...

  4. 洛谷 P4137 Rmq Problem/mex 题解

    题面 首先,由于本人太菜,不会莫队,所以先采用主席树的做法: 离散化是必须环节,否则动态开点线段数都救不了你: 我们对于每个元素i,插入到1~(i-1)的主席树中,第i颗线段树(权值线段树)对于一个区 ...

  5. go 表单

    package main import ( "fmt" "io" "net/http" ) const form = `<html&g ...

  6. CA机构及SSL证书

    互联网安全形势日趋严峻,企业重视自身互联网安全已成必然,SSL认证成大势所趋.要部署SSL证书最首先就是选好CA机构!其次选择适合自己的SSL证书!今天就来介绍一下如何选择CA机构及SSL证书! 首先 ...

  7. springboot自动配置国际化失效分析

    最近在整理springBoot国际化时,发现国际化没有生效,通过报错提示在 MessageTag -> doEndTag处打断点 最后发现messageSource并不是ResourceBund ...

  8. C# WPF集中引用图片等资源的路劲方式

    第一内部资源: pack://application:,,,/images/my.jpg 第二 外部程序资源: pack://SiteOfOrigin:,,,/images/my.jpg 需要将资源放 ...

  9. vue-cli 3.0不能用module.exports为undefined,导致第三方js都没有办法引用

    新的 vue-cli 默认禁止了 commonjs 语法可以添加 babel 插件解决 yarn add @babel/plugin-transform-modules-commonjs -D 或 n ...

  10. 数组去重-----js 判断字符串中是否包含某个字符串indexOf

    判断obj对象是否在arr数组里面,是返回true const dealArray = (arr, obj) => { Array.prototype.S = String.fromCharCo ...