抽象类比

MySql Es
Table Index(Type)
Row Document
Column Field
Schema Mapping
SQL DSL

一些概念

cluster(集群)

一个ES集群由一个或多个节点(Node)组成,每个集群都有一个cluster name作为标识。

node(节点)

一个ES实例就是一个 node,一个机器可以有多个实例,所以并不能说一台机器就是一个 node,大多数情况下每个node运行在一个独立的环境或虚拟机上。

index(索引)

即一系列 documents 的集合。每个索引可以有多个type,不过7.0之后将会被废弃,略过。

mappings(映射)

映射, 就像数据库中的 schema ,描述了文档可能具有的字段或 属性 、每个字段的数据类型—比如 string, integer 或 date —以及Lucene是如何索引和存储这些字段的。

  • 字符串: string
  • 整数: byte, short, integer, long
  • 浮点数: float, double
  • 布尔型: boolean
  • 日期: date
  • keyword:存储数据时候,不会分词建立索引
  • text:存储数据时候,会自动分词,并生成索引

shard(分片)

ES是分布式搜索引擎,每个索引有一个或多个分片,索引的数据被分配到各个分片上,相当于一桶水用了N个杯子装。分片有助于横向扩展,N个分片会被尽可能平均地(rebalance)分配在不同的节点上(例如你有2个节点,4个主分片(不考虑备份),那么每个节点会分到2个分片,后来你增加了2个节点,那么你这4个节点上都会有1个分片,这个过程叫 relocation,ES感知后自动完成)。分片是独立的,对于一个 Search Request 的行为,每个分片都会执行这个 Request。

replica(复制)

可以理解为备份分片,相应地有 primary shard(主分片),主分片和备分片不会出现在同一个节点上(防止单点故障),默认情况下一个索引创建5个分片一个备份(即5primary+5replica=10个分片)。如果你只有一个节点,那么5个 replica 都无法分配(unassigned),此时cluster status会变成Yellow。

倒排索引

Elasticsearch 使用一种称为 倒排索引 的结构,它适用于快速的全文搜索。一个倒排索引由文档中所有不重复词的列表构成,对于其中每个词,有一个包含它的文档列表。

analysis

Document 中的数据是如何转变成倒排索引的,以及查询语句是如何转换成一个个词(Term)使高效率文本搜索变得可行,这种转换数据的过程就称为文本分析(analysis)。

elasticsearch会用某种算法(Tokenizer)对要建索引的文档进行分析, 从文档中提取出若干Token(词元), 这些算法称为Tokenizer(分词器), 这些Token会被进一步处理, 比如转成小写等, 这些进一步的处理算法被称为Filter(过滤器), 被处理后的结果被称为Term(词), 文档中包含了几个这样的Term被称为Frequency(词频)。 引擎会建立Term和原文档的Inverted Index(倒排索引), 这样就能根据Term很快到找到源文档了。

文本分析(analysis)工作由analyzer(分析器)组件负责。analyzer由一个分词器(tokenizer)和0个或者多个过滤器(filter)组成,也可能会有0个或者多个字符映射器(character mappers)组成。

tokenizer用来把文本拆分成一个个的Token。Token包含了比较多的信息,比如Term在文本的中的位置及Term原始文本,以及Term的长度。文本经过tokenizer处理后的结果称为token stream。token stream其实就是一个个Token的顺序排列。token stream将等待着filter来处理。

filter链将用来处理Token Stream中的每一个token。这些处理方式包括删除Token, 改变Token,甚至添加新的Token。比如变小写,去掉里面的HTML标记, 这些处理的算法被称为Character Filter(字符过滤器)

ES集群状态有三种:

  • Green:所有主分片和备份分片都准备就绪(分配成功),即使有一台机器挂了(假设一台机器一个实例),数据都不会丢失,但会变成Yellow状态

  • Yellow:所有主分片准备就绪,但存在至少一个主分片(假设是A)对应的备份分片没有就绪,此时集群属于警告状态,意味着集群高可用和容灾能力下降,如果刚好A所在的机器挂了,并且你只设置了一个备份(已处于未就绪状态),那么A的数据就会丢失(查询结果不完整),此时集群进入Red状态

  • Red:至少有一个主分片没有就绪(直接原因是找不到对应的备份分片成为新的主分片),此时查询的结果会出现数据丢失(不完整)

replica作用:

  • 容灾:primary分片丢失,replica分片就会被顶上去成为新的主分片,同时根据这个新的主分片创建新的replica,集群数据安然无恙;
  • 提高查询性能:replica和primary分片的数据是相同的,所以对于一个query既可以查主分片也可以查备分片,在合适的范围内多个replica性能会更优(但要考虑资源占用也会提升[cpu/disk/heap]),另外index request只能发生在主分片上,replica不能执行index request。

对于一个索引,除非重建索引否则不能调整分片的数目(主分片数, number_of_shards),但可以随时调整 replica 数(number_of_replicas)。

安装运行

通过 docker 启动一个单节点集群

$ docker run -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" docker.elastic.co/elasticsearch/elasticsearch:6.7.2

与 Elasticsearch 交互

使用 RESTful API 通过端口 9200 和 Elasticsearch 进行通信

$ curl -X<METHOD> http://localhost:9200/<PATH>?<QUERY_STRING> -d '<BODY>'

操作索引

新建索引时可以指定设置或者映射,也可以不指定自动生成

$ PUT foo_index
{
"settings": {
"number_of_shards" : 1, #每个索引的主分片数,默认值是 5 。这个配置在索引创建后不能修改。
"number_of_replicas" : 0 #每个主分片的副本数,默认值是 1 。对于活动的索引库,这个配置可以随时修改。
},
"mappings": {
"type_one": { ... any mappings ... },
"type_two": { ... any mappings ... },
...
}
}

修改索引设置

$ PUT foo_index/_settings
{
"number_of_replicas": 1
}

修改索引映射

$ PUT foo_index/_mappings/_doc
{
"properties": {...}
}

删除索引

$ DELETE foo_index

操作文档

使用put新建文档项指定id为1

$ PUT foo_index/_doc/1
{
"name": "demo 1",
"body": "demo foo bar"
}

使用post可以不指定id来新建文档,自动生成id

$ POST foo_index/_doc
{
"name": "demo test",
"body": "demo test"
}

查看id=1的文档

$ GET foo_index/_doc/1

搜索

使用 curl -X GET foo_index/_search -d 'body' 来搜索文档

match_all匹配所有文档,等价于空查询{}

{
"query": {
"match_all": {}
}
}

mathc匹配包含,如果在一个精确值的字段上使用match,例如数字、日期、布尔或者一个 not_analyzed 字符串字段,那么它将会精确匹配给定的值:

{
"query": {
"match": {
"name": "demo"
}
}
}

多字段match使用multi_match

{
"multi_match": {
"query": "full text search",
"fields": [ "title", "body" ]
}
}

term查询被用于精确值匹配,这些精确值可能是数字、时间、布尔或者那些 not_analyzed 的字符串,term 查询对于输入的文本不分析 ,所以它将给定的值进行精确查询

{
"query": {
"term": {
"name": "demo"
}
}
}

terms查询被用于匹配多个精确值

{
"query": {
"terms": {
"name": ["demo", "demo1"]
}
}
}

合并(bool)查询可以组合多种查询方法

{
"bool": {
"must": { "match": { "tweet": "elasticsearch" }},
"must_not": { "match": { "name": "mary" }},
"should": { "match": { "tweet": "full text" }},
"filter": { "range": { "age" : { "gt" : 30 }} }
}
}

聚合搜索

Elasticsearch入门教程之安装与基本使用的更多相关文章

  1. Elasticsearch入门教程(一):Elasticsearch及插件安装

    原文:Elasticsearch入门教程(一):Elasticsearch及插件安装 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:h ...

  2. Elasticsearch入门教程(二):Elasticsearch核心概念

    原文:Elasticsearch入门教程(二):Elasticsearch核心概念 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:ht ...

  3. Elasticsearch入门教程(六):Elasticsearch查询(二)

    原文:Elasticsearch入门教程(六):Elasticsearch查询(二) 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:h ...

  4. Elasticsearch入门教程(五):Elasticsearch查询(一)

    原文:Elasticsearch入门教程(五):Elasticsearch查询(一) 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:h ...

  5. Elasticsearch入门教程(四):Elasticsearch文档CURD

    原文:Elasticsearch入门教程(四):Elasticsearch文档CURD 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接: ...

  6. Elasticsearch入门教程(三):Elasticsearch索引&映射

    原文:Elasticsearch入门教程(三):Elasticsearch索引&映射 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文 ...

  7. ActiveReports 报表控件官方中文入门教程 (1)-安装、激活以及产品资源

    本系列文章主要是面向初次接触 ActiveReports 产品的用户,可以帮助您在三天之内轻松的掌握ActiveReports控件的基本使用方法,包括安装.激活.创建报表.绑定数据源以及发布等内容.本 ...

  8. ElasticSearch入门1: mac 安装

    入门学习顺序: 1. 安装: 1.1 单实例安装: Elastic官方网站: http://www.elastic.co 下载 ElasticSearch: 第一步:点击下载 第二步:点击downlo ...

  9. Elasticsearch入门教程

    ElasticSearch是一个高度可扩展的开源搜索引擎并使用REST API,所以您值得拥有. 在本教程中,将介绍开始使用ElasticSearch的一些主要概念. 下载并运行ElasticSear ...

随机推荐

  1. Python爬虫入门教程 64-100 反爬教科书级别的网站-汽车之家,字体反爬之二

    说说这个网站 汽车之家,反爬神一般的存在,字体反爬的鼻祖网站,这个网站的开发团队,一定擅长前端吧,2019年4月19日开始写这篇博客,不保证这个代码可以存活到月底,希望后来爬虫coder,继续和汽车之 ...

  2. MFC多语言程序版本,在不同的windows系统上的使用

    如何使MFC程序界面支持多国语言?这次使用后给自己做一个总结. 我们使用vc6.0的版本来试验 1. 切换到资源视图,右键Dialog->Insert Copy 2. ok后,会出来一个语言的选 ...

  3. Spark学习之编程进阶总结(一)

    一.简介 这次介绍前面没有提及的 Spark 编程的各种进阶特性,会介绍两种类型的共享变量:累加器(accumulator)与广播变量(broadcast variable).累加器用来对信息进行聚合 ...

  4. 距离度量以及python实现(二)

    接上一篇:http://www.cnblogs.com/denny402/p/7027954.html 7. 夹角余弦(Cosine) 也可以叫余弦相似度. 几何中夹角余弦可用来衡量两个向量方向的差异 ...

  5. 微服务架构 - 解决Docker-Compose服务编排启动顺序问题

    基于Docker Compose进行服务编排时,一定碰到服务启动顺序的问题,例如:B服务启动之前,A服务要已经启动并且可以正常对外服务. 这个启动顺序的问题,Docker Compose本身它是无法解 ...

  6. 深入vue - 源码目录及构建过程分析

     公众号原文链接:深入vue - 源码目录及构建过程分析   喜欢本文可以扫描下方二维码关注我的公众号 「前端小苑」 ​“ 本文主要梳理一下vue代码的目录,以及vue代码构建流程,旨在对vue源码整 ...

  7. Python基础面试,看这篇文章画重点吧,Python面试题No1

    为什么有这个系列的文章 一直想写一些更加基础的文章,但是总是想不到好的点子,最近到了就业季,一大堆学生面临就业了,正好,从Python的面试题出发,分析和解答一些常见的面试题,并且总结一些文字. 每一 ...

  8. TiDB之mac上搭建及调试技巧

    此文目的 由于本人最近已经成为TiDB的粉丝,所以就开始各种研究TiDB的源码,研究源码这个事情,首先就需要在自己电脑上不断的调试及修改.TiDB本身的代码是非常容易编译和调试的,但是要把PD.TiK ...

  9. SoEasyPlatform 代码生成器

    介绍 一款轻量级开源的代码生成器,相对较动软代码生成器而言要轻量的多,支持多种数据库,所用到dll组件也都在github有源码,代码非常的简单有点基础的看源码可以把生成的项目改成自已的风格. 特色 该 ...

  10. 设计模式 | 策略模式(strategy)

    参考:https://www.cnblogs.com/lewis0077/p/5133812.html(深入解析策略模式) 定义: 策略模式定义了一系列的算法,并将每一个算法封装起来,使每个算法可以相 ...