Elasticsearch入门教程之安装与基本使用
抽象类比
MySql | Es |
---|---|
Table | Index(Type) |
Row | Document |
Column | Field |
Schema | Mapping |
SQL | DSL |
一些概念
cluster(集群)
一个ES集群由一个或多个节点(Node)组成,每个集群都有一个cluster name作为标识。
node(节点)
一个ES实例就是一个 node,一个机器可以有多个实例,所以并不能说一台机器就是一个 node,大多数情况下每个node运行在一个独立的环境或虚拟机上。
index(索引)
即一系列 documents 的集合。每个索引可以有多个type,不过7.0之后将会被废弃,略过。
mappings(映射)
映射, 就像数据库中的 schema ,描述了文档可能具有的字段或 属性 、每个字段的数据类型—比如 string, integer 或 date —以及Lucene是如何索引和存储这些字段的。
- 字符串: string
- 整数: byte, short, integer, long
- 浮点数: float, double
- 布尔型: boolean
- 日期: date
- keyword:存储数据时候,不会分词建立索引
- text:存储数据时候,会自动分词,并生成索引
shard(分片)
ES是分布式搜索引擎,每个索引有一个或多个分片,索引的数据被分配到各个分片上,相当于一桶水用了N个杯子装。分片有助于横向扩展,N个分片会被尽可能平均地(rebalance)分配在不同的节点上(例如你有2个节点,4个主分片(不考虑备份),那么每个节点会分到2个分片,后来你增加了2个节点,那么你这4个节点上都会有1个分片,这个过程叫 relocation,ES感知后自动完成)。分片是独立的,对于一个 Search Request 的行为,每个分片都会执行这个 Request。
replica(复制)
可以理解为备份分片,相应地有 primary shard(主分片),主分片和备分片不会出现在同一个节点上(防止单点故障),默认情况下一个索引创建5个分片一个备份(即5primary+5replica=10个分片)。如果你只有一个节点,那么5个 replica 都无法分配(unassigned),此时cluster status会变成Yellow。
倒排索引
Elasticsearch 使用一种称为 倒排索引 的结构,它适用于快速的全文搜索。一个倒排索引由文档中所有不重复词的列表构成,对于其中每个词,有一个包含它的文档列表。
analysis
Document 中的数据是如何转变成倒排索引的,以及查询语句是如何转换成一个个词(Term)使高效率文本搜索变得可行,这种转换数据的过程就称为文本分析(analysis)。
elasticsearch会用某种算法(Tokenizer)对要建索引的文档进行分析, 从文档中提取出若干Token(词元), 这些算法称为Tokenizer(分词器), 这些Token会被进一步处理, 比如转成小写等, 这些进一步的处理算法被称为Filter(过滤器), 被处理后的结果被称为Term(词), 文档中包含了几个这样的Term被称为Frequency(词频)。 引擎会建立Term和原文档的Inverted Index(倒排索引), 这样就能根据Term很快到找到源文档了。
文本分析(analysis)工作由analyzer(分析器)组件负责。analyzer由一个分词器(tokenizer)和0个或者多个过滤器(filter)组成,也可能会有0个或者多个字符映射器(character mappers)组成。
tokenizer用来把文本拆分成一个个的Token。Token包含了比较多的信息,比如Term在文本的中的位置及Term原始文本,以及Term的长度。文本经过tokenizer处理后的结果称为token stream。token stream其实就是一个个Token的顺序排列。token stream将等待着filter来处理。
filter链将用来处理Token Stream中的每一个token。这些处理方式包括删除Token, 改变Token,甚至添加新的Token。比如变小写,去掉里面的HTML标记, 这些处理的算法被称为Character Filter(字符过滤器)
ES集群状态有三种:
Green:所有主分片和备份分片都准备就绪(分配成功),即使有一台机器挂了(假设一台机器一个实例),数据都不会丢失,但会变成Yellow状态
Yellow:所有主分片准备就绪,但存在至少一个主分片(假设是A)对应的备份分片没有就绪,此时集群属于警告状态,意味着集群高可用和容灾能力下降,如果刚好A所在的机器挂了,并且你只设置了一个备份(已处于未就绪状态),那么A的数据就会丢失(查询结果不完整),此时集群进入Red状态
Red:至少有一个主分片没有就绪(直接原因是找不到对应的备份分片成为新的主分片),此时查询的结果会出现数据丢失(不完整)
replica作用:
- 容灾:primary分片丢失,replica分片就会被顶上去成为新的主分片,同时根据这个新的主分片创建新的replica,集群数据安然无恙;
- 提高查询性能:replica和primary分片的数据是相同的,所以对于一个query既可以查主分片也可以查备分片,在合适的范围内多个replica性能会更优(但要考虑资源占用也会提升[cpu/disk/heap]),另外index request只能发生在主分片上,replica不能执行index request。
对于一个索引,除非重建索引否则不能调整分片的数目(主分片数, number_of_shards),但可以随时调整 replica 数(number_of_replicas)。
安装运行
通过 docker 启动一个单节点集群
$ docker run -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" docker.elastic.co/elasticsearch/elasticsearch:6.7.2
与 Elasticsearch 交互
使用 RESTful API 通过端口 9200 和 Elasticsearch 进行通信
$ curl -X<METHOD> http://localhost:9200/<PATH>?<QUERY_STRING> -d '<BODY>'
操作索引
新建索引时可以指定设置或者映射,也可以不指定自动生成
$ PUT foo_index
{
"settings": {
"number_of_shards" : 1, #每个索引的主分片数,默认值是 5 。这个配置在索引创建后不能修改。
"number_of_replicas" : 0 #每个主分片的副本数,默认值是 1 。对于活动的索引库,这个配置可以随时修改。
},
"mappings": {
"type_one": { ... any mappings ... },
"type_two": { ... any mappings ... },
...
}
}
修改索引设置
$ PUT foo_index/_settings
{
"number_of_replicas": 1
}
修改索引映射
$ PUT foo_index/_mappings/_doc
{
"properties": {...}
}
删除索引
$ DELETE foo_index
操作文档
使用put新建文档项指定id为1
$ PUT foo_index/_doc/1
{
"name": "demo 1",
"body": "demo foo bar"
}
使用post可以不指定id来新建文档,自动生成id
$ POST foo_index/_doc
{
"name": "demo test",
"body": "demo test"
}
查看id=1的文档
$ GET foo_index/_doc/1
搜索
使用 curl -X GET foo_index/_search -d 'body'
来搜索文档
match_all匹配所有文档,等价于空查询{}
{
"query": {
"match_all": {}
}
}
mathc匹配包含,如果在一个精确值的字段上使用match,例如数字、日期、布尔或者一个 not_analyzed 字符串字段,那么它将会精确匹配给定的值:
{
"query": {
"match": {
"name": "demo"
}
}
}
多字段match使用multi_match
{
"multi_match": {
"query": "full text search",
"fields": [ "title", "body" ]
}
}
term查询被用于精确值匹配,这些精确值可能是数字、时间、布尔或者那些 not_analyzed 的字符串,term 查询对于输入的文本不分析 ,所以它将给定的值进行精确查询
{
"query": {
"term": {
"name": "demo"
}
}
}
terms查询被用于匹配多个精确值
{
"query": {
"terms": {
"name": ["demo", "demo1"]
}
}
}
合并(bool)查询可以组合多种查询方法
{
"bool": {
"must": { "match": { "tweet": "elasticsearch" }},
"must_not": { "match": { "name": "mary" }},
"should": { "match": { "tweet": "full text" }},
"filter": { "range": { "age" : { "gt" : 30 }} }
}
}
聚合搜索
Elasticsearch入门教程之安装与基本使用的更多相关文章
- Elasticsearch入门教程(一):Elasticsearch及插件安装
原文:Elasticsearch入门教程(一):Elasticsearch及插件安装 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:h ...
- Elasticsearch入门教程(二):Elasticsearch核心概念
原文:Elasticsearch入门教程(二):Elasticsearch核心概念 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:ht ...
- Elasticsearch入门教程(六):Elasticsearch查询(二)
原文:Elasticsearch入门教程(六):Elasticsearch查询(二) 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:h ...
- Elasticsearch入门教程(五):Elasticsearch查询(一)
原文:Elasticsearch入门教程(五):Elasticsearch查询(一) 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:h ...
- Elasticsearch入门教程(四):Elasticsearch文档CURD
原文:Elasticsearch入门教程(四):Elasticsearch文档CURD 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接: ...
- Elasticsearch入门教程(三):Elasticsearch索引&映射
原文:Elasticsearch入门教程(三):Elasticsearch索引&映射 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文 ...
- ActiveReports 报表控件官方中文入门教程 (1)-安装、激活以及产品资源
本系列文章主要是面向初次接触 ActiveReports 产品的用户,可以帮助您在三天之内轻松的掌握ActiveReports控件的基本使用方法,包括安装.激活.创建报表.绑定数据源以及发布等内容.本 ...
- ElasticSearch入门1: mac 安装
入门学习顺序: 1. 安装: 1.1 单实例安装: Elastic官方网站: http://www.elastic.co 下载 ElasticSearch: 第一步:点击下载 第二步:点击downlo ...
- Elasticsearch入门教程
ElasticSearch是一个高度可扩展的开源搜索引擎并使用REST API,所以您值得拥有. 在本教程中,将介绍开始使用ElasticSearch的一些主要概念. 下载并运行ElasticSear ...
随机推荐
- 响应式WEB设计的基本原则大总结
响 应式Web设计对于解决多类型屏幕问题来说是个不错方案,但从印刷的角度来看,其却存在着很多的困难.没有固定的页面尺寸.没有毫米或英寸,没有任何物理 限制,让人感到无从下手.随着建立网站可用的各种小工 ...
- hive新建分区表
hive新建分区表语句如下: create table table_name (col1_name string comment '备注1', col2_name string comment '备注 ...
- HWPushDemo【华为推送集成,基于2.6.1.301版本】
版权声明:本文为HaiyuKing原创文章,转载请注明出处! 前言 这个Demo只是记录华为推送的集成,不能运行. 另外,因为可能用到存储权限,所以还需要搭配运行时权限申请功能. 使用步骤 一.项目组 ...
- mysql实现主从备份
mysql 主从备份的原理: 主服务器在做数据库操作的时候将所有的操作通过日志记录在binlog里面,有专门的文件存放.如localhost-bin.000003,这种,从服务器 和主服务配置好关系后 ...
- [翻译 EF Core in Action 1.9] 掀开EF Core的引擎盖看看EF Core内部是如何工作的
Entity Framework Core in Action Entityframework Core in action是 Jon P smith 所著的关于Entityframework Cor ...
- Asp.Net Core 轻松学-基于微服务的后台任务调度管理器
前言 在 Asp.Net Core 中,我们常常使用 System.Threading.Timer 这个定时器去做一些需要长期在后台运行的任务,但是这个定时器在某些场合却不太灵光,而且常常无法 ...
- Postgre Sql获取最近一周、一月、一年日期函数
使用Postgre Sql获取近一周.一年.一月等系统函数调用如下,使用方面相对于Ms Sql server 容易了许多. --当前时间 select now(); --current_timesta ...
- 在Unity中实现小地图(Minimap)
小地图的基本概念众所周知,小地图(或雷达)是用于显示周围环境信息的.首先,小地图是以主角为中心的.其次,小地图上应该用图标来代替真实的人物模型,因为小地图通常很小,玩家可能无法看清真实的模型.大多数小 ...
- 结合JDK源码看设计模式——装饰者模式
定义 在不改变原有对象的基础之上,将功能附加到对象上 适用场景 扩展一个类的功能 动态的给对象增加功能,当功能不需要的时候能够动态删除 详解 在看到定义的时候,可能很多人会想,这不就是继承吗?的确很像 ...
- php7连接mysql测试代码
php7连接mysql测试代码 <?php $mysqli = new mysqli("localhost", "root", "passwor ...