●hihocoder #1394 网络流四·最小路径覆盖
题链:
http://hihocoder.com/problemset/problem/1394
题解:
有向图最小路径覆盖:最少的路径条数不重不漏的覆盖所有点。
注意到在任意一个最小路径覆盖的方案下,
每条路径的起点的入度为 0,终点的出度为 0,而中间的点的入度和出度以及起点的出度和终点的入度都为 1
那么把每个点拆为两个: u 和 u',分别代表其 出点 和 入点
然后对于 边 u->v, 在 u 和 v' 之间建立双向边。
那么形成二分图。
二分图匹配后,某条匹配边上的起点的出度 +1,终点的入度 +1,
那么没有被匹配到的 u'则是某条路径的起点(即没有入度),
那么没有被匹配到的 u 则是某条路径的终点(即没有出度),
正好二分图最大匹配后,没有被匹配的u'(或u)的个数是最少的,则表明路径是最少的(起点或终点是最少的)。
又因为 没有被匹配的 u'的数量 == 点数N - 匹配数
所以,有向图最小路径覆盖 =点数 -二分图最大匹配数
(更加详细的图文讲解,非常不错的 http://blog.csdn.net/tramp_1/article/details/52742572)
二分图匹配可以用匈牙利,也可以用最大流来做。
代码:
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 1500
#define MAXM 50000
#define INF 0x3f3f3f3f
using namespace std;
struct Edge{
int to[MAXM],cap[MAXM],nxt[MAXM],head[MAXN],ent;
void Init(){ent=2;}
void Adde(int u,int v,int w){
to[ent]=v; cap[ent]=w; nxt[ent]=head[u]; head[u]=ent++;
to[ent]=u; cap[ent]=0; nxt[ent]=head[v]; head[v]=ent++;
}
int Next(int i,bool type){
return type?head[i]:nxt[i];
}
}E;
int cur[MAXN],d[MAXN];
int N,M,S,T;
int idx(int i,int k){
return i+k*N;
}
bool bfs(){
queue<int>q; int u,v;
memset(d,0,sizeof(d));
d[S]=1; q.push(S);
while(!q.empty()){
u=q.front(); q.pop();
for(int i=E.Next(u,1);i;i=E.Next(i,0)){
v=E.to[i];
if(d[v]||!E.cap[i]) continue;
d[v]=d[u]+1; q.push(v);
}
}
return d[T];
}
int dfs(int u,int reflow){
if(u==T||!reflow) return reflow;
int flowout=0,f,v;
for(int &i=cur[u];i;i=E.Next(i,0)){
v=E.to[i];
if(d[v]!=d[u]+1) continue;
f=dfs(v,min(reflow,E.cap[i]));
flowout+=f; E.cap[i^1]+=f;
reflow-=f; E.cap[i]-=f;
if(!reflow) break;
}
if(!flowout) d[u]=0;
return flowout;
}
int Dinic(){
int flow=0;
while(bfs()){
memcpy(cur,E.head,sizeof(E.head));
flow+=dfs(S,INF);
}
return flow;
}
int main()
{
E.Init();
scanf("%d%d",&N,&M);
S=N*2+1; T=N*2+2;
for(int i=1,u,v;i<=M;i++){
scanf("%d%d",&u,&v);
E.Adde(idx(u,0),idx(v,1),1);
}
for(int i=1;i<=N;i++){
E.Adde(S,idx(i,0),1);
E.Adde(idx(i,1),T,1);
}
int match=Dinic();
printf("%d",N-match);
return 0;
}
●hihocoder #1394 网络流四·最小路径覆盖的更多相关文章
- hihocoder #1394 : 网络流四·最小路径覆盖(最小路径覆盖)
#1394 : 网络流四·最小路径覆盖 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 国庆期间正是旅游和游玩的高峰期. 小Hi和小Ho的学习小组为了研究课题,决定趁此机 ...
- hihoCoder 1394 : 网络流四·最小路径覆盖
题目链接:https://hihocoder.com/problemset/problem/1394 题目说是网络流,但是其实就是求有向无环图的最小路径覆盖. 不会网络流,只好用二分匹配了. 把每个点 ...
- hiho 第118周 网络流四·最小路径覆盖
描述 国庆期间正是旅游和游玩的高峰期. 小Hi和小Ho的学习小组为了研究课题,决定趁此机会派出若干个调查团去沿途查看一下H市内各个景点的游客情况. H市一共有N个旅游景点(编号1..N),由M条单向游 ...
- hihoCoder 网络流四·最小路径覆盖
题面带解释 hihoCoder感觉很好. 网络流的精华就是建图 #include<cstdio> #include<iostream> #include<algorith ...
- [HihoCoder1394]网络流四·最小路径覆盖
题目大意:从有向无环图中选出若干点不想交的链,使得这些链覆盖所有的点,并且链的条数最小. 思路:设超级源点$S$.超级汇点$T$.将$N$个点复制一份,分为$A$部和$B$部.对于$A$部的所有点$A ...
- 网络流二十四题之P2764 最小路径覆盖问题
题目描述 给定有向图 G=(V,E)G=(V,E) .设 PP 是 GG 的一个简单路(顶点不相交)的集合.如果 VV 中每个定点恰好在PP的一条路上,则称 PP 是 GG 的一个路径覆盖.PP中路径 ...
- 【网络流24题】 No.3 最小路径覆盖问题 (网络流|匈牙利算法 ->最大二分匹配)
[题意] 给定有向图 G=(V,E).设 P 是 G 的一个简单路(顶点不相交) 的集合.如果 V 中每个顶点恰好在 P 的一条路上,则称 P 是 G 的一个路径覆盖. P 中路径可以从 V 的任何一 ...
- LOJ6002 - 「网络流 24 题」最小路径覆盖
原题链接 Description 求一个DAG的最小路径覆盖,并输出一种方案. Solution 模板题啦~ Code //「网络流 24 题」最小路径覆盖 #include <cstdio&g ...
- LibreOJ 6003. 「网络流 24 题」魔术球 贪心或者最小路径覆盖
6003. 「网络流 24 题」魔术球 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 ...
随机推荐
- MyGod--Beta版本前期报告
下一阶段需要改进完善的功能 1.完善购买功能,商品购买后,将生成申请订单,卖家将收到提醒.卖家在完成订单后,可以选择完成订单,商品将下架. 2.完善搜索功能,将界面中的搜索功能添加进去(简单考虑只搜索 ...
- 关于使用栈将一般运算式翻译为后缀表达式并实现三级运算的方法及实例(cpp版)
#include <iostream> #include <stack> #include <vector> #include <string> #de ...
- iOS开发之Objective-C与JavaScript的交互
UIWebView是iOS最常用的SDK之一,它有一个stringByEvaluatingJavaScriptFromString方法可以将javascript嵌入页面中,通过这个方法我们可以在iOS ...
- SpringMVC 无法访问到指定jsp页面可能的原因
当出现你的程序可以访问到对应的controller层.但是却无法访问对应的jsp文件时.你首先做的不是检查web.xml等配置文件,而是打开的服务器根文件检查对应路径下的文件是否存在.命名是否正确.命 ...
- 【转】optach学习
[转自:https://yq.aliyun.com/articles/28007,仅作学习用途] 摘要: Opatch 是oracle公司开发的安装,卸载,检测patch冲突的工具,管理oracle所 ...
- 关于win10系统1709版本安装JDK出现变量配置正确但仍有“java不是内部或外部命令”的解决办法
背景:联想拯救者R720笔记本,系统一键还原了,需要重新安装一部分软件,最基本的就是JDK,但今天在安装时遇到了问题,之前安装的1.8版本,没有仔细配置环境变量,这一次安装的是1.7版本的,仔仔细细配 ...
- Spring Security 入门(1-8)Spring Security 的配置文件举例
- KNN算法简单应用
这里是写给小白看的,大牛路过勿喷. 1 KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集 ...
- 译《Time, Clocks, and the Ordering of Events in a Distributed System》
Motivation <Time, Clocks, and the Ordering of Events in a Distributed System>大概是在分布式领域被引用的最多的一 ...
- 算法 排序lowB三人组 冒泡排序 选择排序 插入排序
参考博客:基于python的七种经典排序算法 [经典排序算法][集锦] 经典排序算法及python实现 首先明确,算法的实质 是 列表排序.具体就是操作的列表,将无序列表变成有序列表! 一 ...