题面(本人翻译)

A triangle is a Heron’s triangle if it satisfies that the side lengths of it are consecutive integers t - 1, t, t + 1 and thatits area is an integer. Now, for given n you need to find a Heron’s triangle associated with the smallest t bigger

than or equal to n.

一个三角形是 Heron 三角形仅当它的三边长是连续的正整数 t - 1, t, t + 1, 并且面积是正整数。现在,给你一个整数 N ,求大于等于 N 的最小的合法的 t (Heron 三角形的第二小的边)。

Input

The input contains multiple test cases. The first line of a multiple input is an integer T (1 ≤ T ≤ 30000) followedby T lines. Each line contains an integer N (1 ≤ N ≤ 10^30).

一个正整数 T 表示数据组数,1 ≤ T ≤ 30000。接下来 T 行每行一个整数 N,1 ≤ N ≤ 10^30。

Output

For each test case, output the smallest t in a line. If the Heron’s triangle required does not exist, output -1.

每个数据输出一行,即题意中的最小的 t ,如果没有满足要求的 Heron 三角形,输出 -1。

Sample Input

4
1
2
3
4

Sample Output

4
4
4
4

题解

我们可以用海伦公式表示面积

我们设 x = t/2,y = 2S/t,那么

这是pell方程的形式,所以先手算出最小的解 x=2,y=3,然后我们用pell方程的递推式:

我们会发现X增长得很快,到第52个就超过十的三十次方了,因此我们可以先打个表

X[1] = 4;
X[2] = 14;
X[3] = 52;
X[4] = 194;
X[5] = 724;
X[6] = 2702;
X[7] = 10084;
X[8] = 37634;
X[9] = 140452;
X[10] = 524174;
X[11] = 1956244;
X[12] = 7300802;
X[13] = 27246964;
X[14] = 101687054;
X[15] = 379501252;
X[16] = 1416317954;
X[17] = 5285770564;
X[18] = 19726764302;
X[19] = 73621286644;
X[20] = 274758382274;
X[21] = 1025412242452;
X[22] = 3826890587534;
X[23] = 14282150107684;
X[24] = 53301709843202;
X[25] = 198924689265124;
X[26] = 742397047217294;
X[27] = 2770663499604052;
X[28] = 10340256951198914;
X[29] = 38590364305191604;
X[30] = 144021200269567502;
X[31] = 537494436773078404;
X[32] = 2005956546822746114;
X[33] = 7486331750517906052;
X[34] = 27939370455248878094;
X[35] = 104271150070477606324;
X[36] = 389145229826661547202;
X[37] = 1452309769236168582484;
X[38] = 5420093847118012782734;
X[39] = 20228065619235882548452;
X[40] = 75492168629825517411074;
X[41] = 281740608900066187095844;
X[42] = 1051470266970439230972302;
X[43] = 3924140458981690736793364;
X[44] = 14645091568956323716201154;
X[45] = 54656225816843604128011252;
X[46] = 203979811698418092795843854;
X[47] = 761263020976828767055364164;
X[48] = 2841072272208896975425612802;
X[49] = 10603026067858759134647087044;
X[50] = 39571031999226139563162735374;
X[51] = 147681101929045799118003854452;
X[52] = 551153375716957056908852682434;
X[53] = 2056932400938782428517406875284; // 此处就超过 10^30 了

然后就二分判断就过了。

这题根本就不存在 -1。

CODE

zxy tql %%%%%%

#include<cstdio>
#include<cstring>
#include<vector>
#include<stack>
#include<queue>
#include<algorithm>
#include<map>
#include<cmath>
#include<bitset>
#include<ctime>
#include<iostream>
#define MAXN 2005
#define LL long long
#define ULL unsigned LL
#define rg register
#define lowbit(x) (-(x) & (x))
#define ENDL putchar('\n')
#define DB double
//#define bs bitset<1005>
//#pragma GCC optimize(2)
//#pragma G++ optimize(3)
//#define int LL
using namespace std;
char char_read_before = 1;
inline int read() {
int f = 1,x = 0;char s = char_read_before;
while(s < '0' || s > '9') {if(s == '-') f = -1;s = getchar();}
while(s >= '0' && s <= '9') {x = x * 10 - '0' + s;s = getchar();}
char_read_before = s; return x * f;
}
inline char readchar() {
char s = char_read_before;
while(s == 1 || s == ' ' || s == '\n') s = getchar();
char_read_before = 1; return s;
}
LL zxy = 100000000;
int n,m,i,j,s,o,k;
DB bg;inline DB Time() {return DB(clock() - bg) / CLOCKS_PER_SEC;} struct Num{
LL s[4];
Num(){s[0]=s[1]=s[2]=s[3]=0;}
Num(int b) {s[0] = b;s[1] = s[2] = s[3] = 0;}
Num operator = (int b) {
s[0] = b;
s[1] = s[2] = s[3] = 0;
return *this;
}
void tl() {
s[0] *= 10;
s[1] = s[1] * 10 + s[0] / zxy;
s[2] = s[2] * 10 + s[1] / zxy;
s[3] = s[3] * 10 + s[2] / zxy;
s[0] %= zxy;
s[1] %= zxy;
s[2] %= zxy;
}
};
inline Num operator *(Num a,Num b) {
Num c;
for(int i = 0;i < 4;i ++) {
LL m = 0;
for(int j = 0;i+j < 4;j ++) {
c.s[i+j] += a.s[i] *1ll* b.s[j] + m;
m = c.s[i+j] / zxy;
c.s[i+j] %= zxy;
}
}return c;
}
inline Num operator +(Num a,Num b) {
LL m = 0;
for(int i=0;i<4;i++) {
a.s[i] += b.s[i] + m;
m = a.s[i] / zxy;
a.s[i] %= zxy;
}return a;
}
inline bool operator < (Num a,Num b) {
if(a.s[3] != b.s[3]) return a.s[3] < b.s[3];
if(a.s[2] != b.s[2]) return a.s[2] < b.s[2];
if(a.s[1] != b.s[1]) return a.s[1] < b.s[1];
return a.s[0] < b.s[0];
}
inline bool operator >= (Num a,Num b) {return !(a < b);}
inline void print(Num a) {
int le = 0;
if(a.s[3]) le = 3;
else if(a.s[2]) le = 2;
else if(a.s[1]) le = 1;
printf("%d",a.s[le]);
while(le --) printf("%08d",a.s[le]);
return ;
}
inline Num readn() {
int f = 1;Num x(0);char s = char_read_before;
while(s < '0' || s > '9') {if(s == '-') f = -1;s = getchar();}
while(s >= '0' && s <= '9') {x.tl();x = x + Num(s - '0');s = getchar();}
char_read_before = s; return x;
} struct mat{
int n,m;
Num s[3][3];
mat(){n=m=0;s[1][1]=s[1][2]=s[2][1]=s[2][2]=Num();}
}A,B;
inline mat operator * (mat a,mat b) {
mat c; c.n = a.n;c.m = b.m;
for(int i=1;i<=c.n;i++)
for(int k=1;k<=a.m;k++)
for(int j=1;j<=c.m;j++)
c.s[i][j] = c.s[i][j] + a.s[i][k] * b.s[k][j];
return c;
} Num as[100];
signed main() {
bg = clock();
A.n = 1;
A.m = B.n = B.m = 2;
A.s[1][1] = 2;
A.s[1][2] = 3;
B.s[1][1] = 2;
B.s[2][1] = 1;
B.s[1][2] = 3;
B.s[2][2] = 2;
for(int i = 0;i <= 52;i ++) {
as[i] = A.s[1][1] * Num(2);
A = A * B;
}
int T = read();
while(T --) {
Num nn = readn();
int l = 0,r = 52,mid;
while(l < r) {
mid = l + r >> 1;
if(as[mid] >= nn) r = mid;
else l = mid+1;
}
print(as[l]);
ENDL;
}
return 0;
}

HDU 6222 Heron and His Triangle (pell 方程)的更多相关文章

  1. Heron and His Triangle HDU - 6222(pell 大数)

    ---恢复内容开始--- Heron and His Triangle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/2 ...

  2. HDU 2281 Square Number Pell方程

    http://acm.hdu.edu.cn/showproblem.php?pid=2281 又是一道Pell方程 化简构造以后的Pell方程为 求出其前15个解,但这些解不一定满足等式,判断后只有5 ...

  3. Pell方程及其一般形式

    一.Pell方程 形如x^2-dy^2=1的不定方程叫做Pell方程,其中d为正整数,则易得当d是完全平方数的时候这方程无正整数解,所以下面讨论d不是完全平方数的情况. 设Pell方程的最小正整数解为 ...

  4. hdu 3304 Interesting Yang Yui Triangle

    hdu 3304 Interesting Yang Yui Triangle 题意: 给出P,N,问第N行的斐波那契数模P不等于0的有多少个? 限制: P < 1000,N <= 10^9 ...

  5. hdu3293(pell方程+快速幂)

    裸的pell方程. 然后加个快速幂. No more tricks, Mr Nanguo Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: ...

  6. POJ 1320 Street Numbers Pell方程

    http://poj.org/problem?id=1320 题意很简单,有序列 1,2,3...(a-1),a,(a+1)...b  要使以a为分界的 前缀和 和 后缀和 相等 求a,b 因为序列很 ...

  7. POJ 2427 Smith's Problem Pell方程

    题目链接 :  http://poj.org/problem?id=2427 PELL方程几个学习的网址: http://mathworld.wolfram.com/PellEquation.html ...

  8. Heron and His Triangle HDU - 6222

    题目链接:https://vjudge.net/problem/HDU-6222 思路:打表找规律. 然后因为数据范围较大可以考虑用字符串模拟,或者__int128要注意用一个快读快输模板. 1 #i ...

  9. Heron and His Triangle 2017 沈阳区域赛

    A triangle is a Heron’s triangle if it satisfies that the side lengths of it are consecutive integer ...

随机推荐

  1. 利用Github Action实现Tornadofx/JavaFx打包

    原文地址: 利用Github Action实现Tornadofx/JavaFx打包 - Stars-One的杂货小窝 最近开了个新项目,主要是个工具软件,也算个人的自娱自乐吧,也算开源的一部分,想着都 ...

  2. 开发工具-SQL Server官方下载地址

    更新记录 2022年6月10日 完善标题. https://www.microsoft.com/zh-cn/sql-server/sql-server-downloads 相关链接: SSMS下载地址 ...

  3. C语言学习之我见-strlen()字符串长度函数

    strlen()函数,负责给出字符串的长度.注意是字符串的长度,不是字符数组的长度. (1)函数原型: size_t __cdecl strlen(const char *_Str); (2)头文件` ...

  4. StringJoiner的使用

    1.添加字符串 add()方法 StringJoiner sj = new StringJoiner(","); sj.add("我爱你"); sj.add(& ...

  5. 爬虫(2) - Requests(1) | Requests模块的深度解析

    1.Requests 安装与请求方法 requests官方文档:https://docs.python-requests.org/zh_CN/latest/,官方文档不知道为什么挂了,访问不了.我找了 ...

  6. 8.3 如何在Windows电脑安装Java开发环境(JDK)

    下载 来到JDK官方下载界面,找到Java SE 8(简称JDK 8)后面的JDK下载,来到该界面,先同意协议,然后下载对应平台的JDK,我们这里下载Windows x64. 安装 双击安装就行了了, ...

  7. 使用 Cheat Engine 修改 Kingdom Rush 中的金钱、生命、星

    最新博客链接 最近想学习一下 CE,刚好看见游戏库里装了 Kingdom Rush 就拿它来研究吧.这里写的东西,需要一些 Cheat Engine 的基础,可以看看教程. 这里主要是看写的注释,来理 ...

  8. JavaScript知识梳理

    JS内功修炼 专业术语 类,封装,继承, 专业术语 babel 块级作用域 函数 扩展对象的功能性 解构 set和map js的类 改进的数组功能 Promise与异步编程 代理和反射 用模块封装代码 ...

  9. MyBatis项目创建

    一.开发环境的准备 总览: mybatis搭建过程: 1.导入jar 2.创建mybatis的核心(全局)配置文件mybatis-config.xml,并配置 3.创建映射文件XxxMapper.xm ...

  10. CentOS7 No rule to make target

    由于缺少依赖包,需要安装以下包: yum -y install gcc gcc-c++ autoconf libjpeg libjpeg-devel libpng libpng-devel freet ...