从查询重写角度理解elasticsearch的高亮原理
一、高亮的一些问题
elasticsearch提供了三种高亮方式,前面我们已经简单的了解了elasticsearch的高亮原理; 高亮处理跟实际使用查询类型有十分紧密的关系,其中主要的一点就是muti term 查询的重写,例如wildcard、prefix等,由于查询本身和高亮都涉及到查询语句的重写,如果两者之间的重写机制不同,那么就可能会碰到以下情况
相同的查询语句, 使用unified和fvh得到的高亮结果是不同的,甚至fvh Highlighter无任何高亮信息返回;
二、数据环境
elasticsearch 8.0
PUT highlight_test
{
"mappings": {
"properties": {
"text":{
"type": "text",
"term_vector": "with_positions_offsets"
}
}
},
"settings": {
"number_of_replicas":0,
"number_of_shards": 1
}
}
PUT highlight_test/_doc/1
{
"name":"mango",
"text":"my name is mongo, i am test hightlight in elastic search"
}
三、muti term查询重写简介
所谓muti term查询就是查询中并不是明确的关键字,而是需要elasticsearch重写查询语句,进一步明确关键字;以下查询会涉及到muti term查询重写;
fuzzy
prefix
query_string
regexp
wildcard
以上查询都支持rewrite参数,最终将查询重写为bool查询或者bitset;
查询重写主要影响以下几方面
重写需要抓取哪些关键字以及抓取的数量;
抓取关键字的相关性计算方式;
查询重写支持以下参数选项
constant_score,默认值,如果需要抓取的关键字比较少,则重写为bool查询,否则抓取所有的关键字并重写为bitset;直接使用boost参数作为文档score,一般term level的查询的boost默认值为1;
constant_score_boolean,将查询重写为bool查询,并使用boost参数作为文档的score,受到indices.query.bool.max_clause_count 限制,所以默认最多抓取1024个关键字;
scoring_boolean,将查询重写为bool查询,并计算文档的相对权重,受到indices.query.bool.max_clause_count 限制,所以默认最多抓取1024个关键字;
top_terms_blended_freqs_N,抓取得分最高的前N个关键字,并将查询重写为bool查询;此选项不受indices.query.bool.max_clause_count 限制;选择命中文档的所有关键字中权重最大的作为文档的score;
top_terms_boost_N,抓取得分最高的前N个关键字,并将查询重写为bool查询;此选项不受indices.query.bool.max_clause_count 限制;直接使用boost作为文档的score;
top_terms_N,抓取得分最高的前N个关键字,并将查询重写为bool查询;此选项不受indices.query.bool.max_clause_count 限制;计算命中文档的相对权重作为评分;
三、wildcard查询重写分析
我们通过elasticsearch来查看一下以下查询语句的重写逻辑;
{
"query":{
"wildcard":{
"text":{
"value":"m*"
}
}
}
}
通过查询使用的字段映射类型构建WildCardQuery,并使用查询语句中配置的rewrite对应的MultiTermQuery.RewriteMethod;
//WildcardQueryBuilder.java
@Override
protected Query doToQuery(SearchExecutionContext context) throws IOException {
MappedFieldType fieldType = context.getFieldType(fieldName);
if (fieldType == null) {
throw new IllegalStateException("Rewrite first");
}
MultiTermQuery.RewriteMethod method = QueryParsers.parseRewriteMethod(rewrite, null, LoggingDeprecationHandler.INSTANCE);
return fieldType.wildcardQuery(value, method, caseInsensitive, context);
}
根据查询语句中配置的rewrite,查找对应的MultiTermQuery.RewriteMethod,由于我们没有在wildcard查询语句中设置rewrite参数,这里直接返回null;
//QueryParsers.java
public static MultiTermQuery.RewriteMethod parseRewriteMethod(
@Nullable String rewriteMethod,
@Nullable MultiTermQuery.RewriteMethod defaultRewriteMethod,
DeprecationHandler deprecationHandler
) {
if (rewriteMethod == null) {
return defaultRewriteMethod;
}
if (CONSTANT_SCORE.match(rewriteMethod, deprecationHandler)) {
return MultiTermQuery.CONSTANT_SCORE_REWRITE;
}
if (SCORING_BOOLEAN.match(rewriteMethod, deprecationHandler)) {
return MultiTermQuery.SCORING_BOOLEAN_REWRITE;
}
if (CONSTANT_SCORE_BOOLEAN.match(rewriteMethod, deprecationHandler)) {
return MultiTermQuery.CONSTANT_SCORE_BOOLEAN_REWRITE;
}
int firstDigit = -1;
for (int i = 0; i < rewriteMethod.length(); ++i) {
if (Character.isDigit(rewriteMethod.charAt(i))) {
firstDigit = i;
break;
}
}
if (firstDigit >= 0) {
final int size = Integer.parseInt(rewriteMethod.substring(firstDigit));
String rewriteMethodName = rewriteMethod.substring(0, firstDigit);
if (TOP_TERMS.match(rewriteMethodName, deprecationHandler)) {
return new MultiTermQuery.TopTermsScoringBooleanQueryRewrite(size);
}
if (TOP_TERMS_BOOST.match(rewriteMethodName, deprecationHandler)) {
return new MultiTermQuery.TopTermsBoostOnlyBooleanQueryRewrite(size);
}
if (TOP_TERMS_BLENDED_FREQS.match(rewriteMethodName, deprecationHandler)) {
return new MultiTermQuery.TopTermsBlendedFreqScoringRewrite(size);
}
}
throw new IllegalArgumentException("Failed to parse rewrite_method [" + rewriteMethod + "]");
}
}
WildCardQuery继承MultiTermQuery,直接调用rewrite方法进行重写,由于我们没有在wildcard查询语句中设置rewrite参数,这里直接使用默认的CONSTANT_SCORE_REWRITE;
//MultiTermQuery.java
protected RewriteMethod rewriteMethod = CONSTANT_SCORE_REWRITE;
@Override
public final Query rewrite(IndexReader reader) throws IOException {
return rewriteMethod.rewrite(reader, this);
}
可以看到CONSTANT_SCORE_REWRITE是直接使用的匿名类,rewrite方法返回的是MultiTermQueryConstantScoreWrapper的实例;
//MultiTermQuery.java
public static final RewriteMethod CONSTANT_SCORE_REWRITE =
new RewriteMethod() {
@Override
public Query rewrite(IndexReader reader, MultiTermQuery query) {
return new MultiTermQueryConstantScoreWrapper<>(query);
}
};
在以下方法中,首先会得到查询字段对应的所有term集合;
然后通过 query.getTermsEnum获取跟查询匹配的所有term集合;
最后根据collectTerms调用的返回值决定是否构建bool查询还是bit set;
//MultiTermQueryConstantScoreWrapper.java
private WeightOrDocIdSet rewrite(LeafReaderContext context) throws IOException {
final Terms terms = context.reader().terms(query.field);
if (terms == null) {
// field does not exist
return new WeightOrDocIdSet((DocIdSet) null);
}
final TermsEnum termsEnum = query.getTermsEnum(terms);
assert termsEnum != null;
PostingsEnum docs = null;
final List<TermAndState> collectedTerms = new ArrayList<>();
if (collectTerms(context, termsEnum, collectedTerms)) {
// build a boolean query
BooleanQuery.Builder bq = new BooleanQuery.Builder();
for (TermAndState t : collectedTerms) {
final TermStates termStates = new TermStates(searcher.getTopReaderContext());
termStates.register(t.state, context.ord, t.docFreq, t.totalTermFreq);
bq.add(new TermQuery(new Term(query.field, t.term), termStates), Occur.SHOULD);
}
Query q = new ConstantScoreQuery(bq.build());
final Weight weight = searcher.rewrite(q).createWeight(searcher, scoreMode, score());
return new WeightOrDocIdSet(weight);
}
// Too many terms: go back to the terms we already collected and start building the bit set
DocIdSetBuilder builder = new DocIdSetBuilder(context.reader().maxDoc(), terms);
if (collectedTerms.isEmpty() == false) {
TermsEnum termsEnum2 = terms.iterator();
for (TermAndState t : collectedTerms) {
termsEnum2.seekExact(t.term, t.state);
docs = termsEnum2.postings(docs, PostingsEnum.NONE);
builder.add(docs);
}
}
// Then keep filling the bit set with remaining terms
do {
docs = termsEnum.postings(docs, PostingsEnum.NONE);
builder.add(docs);
} while (termsEnum.next() != null);
return new WeightOrDocIdSet(builder.build());
}
调用collectTerms默认只会提取查询命中的16个关键字;
//MultiTermQueryConstantScoreWrapper.java
private static final int BOOLEAN_REWRITE_TERM_COUNT_THRESHOLD = 16;
private boolean collectTerms(
LeafReaderContext context, TermsEnum termsEnum, List<TermAndState> terms)
throws IOException {
final int threshold =
Math.min(BOOLEAN_REWRITE_TERM_COUNT_THRESHOLD, IndexSearcher.getMaxClauseCount());
for (int i = 0; i < threshold; ++i) {
final BytesRef term = termsEnum.next();
if (term == null) {
return true;
}
TermState state = termsEnum.termState();
terms.add(
new TermAndState(
BytesRef.deepCopyOf(term),
state,
termsEnum.docFreq(),
termsEnum.totalTermFreq()));
}
return termsEnum.next() == null;
}
通过以上分析wildcard查询默认情况下,会提取字段中所有命中查询的关键字;
四、fvh Highlighter中wildcard的查询重写
在muti term query中,提取查询关键字是高亮逻辑一个很重要的步骤;
我们使用以下高亮语句,分析以下高亮中提取查询关键字过程中的查询重写;
{
"query":{
"wildcard":{
"text":{
"value":"m*"
}
}
},
"highlight":{
"fields":{
"text":{
"type":"fvh"
}
}
}
}
默认情况下只有匹配的字段才会进行高亮,这里构建CustomFieldQuery;
//FastVectorHighlighter.java
if (field.fieldOptions().requireFieldMatch()) {
/*
* we use top level reader to rewrite the query against all readers,
* with use caching it across hits (and across readers...)
*/
entry.fieldMatchFieldQuery = new CustomFieldQuery(
fieldContext.query,
hitContext.topLevelReader(),
true,
field.fieldOptions().requireFieldMatch()
);
}
通过调用flatten方法得到重写之后的flatQueries,然后将每个提取的关键字重写为BoostQuery;
//FieldQuery.java
public FieldQuery(Query query, IndexReader reader, boolean phraseHighlight, boolean fieldMatch)
throws IOException {
this.fieldMatch = fieldMatch;
Set<Query> flatQueries = new LinkedHashSet<>();
flatten(query, reader, flatQueries, 1f);
saveTerms(flatQueries, reader);
Collection<Query> expandQueries = expand(flatQueries);
for (Query flatQuery : expandQueries) {
QueryPhraseMap rootMap = getRootMap(flatQuery);
rootMap.add(flatQuery, reader);
float boost = 1f;
while (flatQuery instanceof BoostQuery) {
BoostQuery bq = (BoostQuery) flatQuery;
flatQuery = bq.getQuery();
boost *= bq.getBoost();
}
if (!phraseHighlight && flatQuery instanceof PhraseQuery) {
PhraseQuery pq = (PhraseQuery) flatQuery;
if (pq.getTerms().length > 1) {
for (Term term : pq.getTerms()) rootMap.addTerm(term, boost);
}
}
}
}
由于WildCardQuery是MultiTermQuery的子类,所以在flatten方法中最终直接使用MultiTermQuery.TopTermsScoringBooleanQueryRewrite进行查询重写,这里的top N是MAX_MTQ_TERMS = 1024;
//FieldQuery.java
private static final int MAX_MTQ_TERMS = 1024;
protected void flatten(
Query sourceQuery, IndexReader reader, Collection<Query> flatQueries, float boost)
throws IOException {
..................................
..................................
else if (reader != null) {
Query query = sourceQuery;
Query rewritten;
if (sourceQuery instanceof MultiTermQuery) {
rewritten =
new MultiTermQuery.TopTermsScoringBooleanQueryRewrite(MAX_MTQ_TERMS)
.rewrite(reader, (MultiTermQuery) query);
} else {
rewritten = query.rewrite(reader);
}
if (rewritten != query) {
// only rewrite once and then flatten again - the rewritten query could have a speacial
// treatment
// if this method is overwritten in a subclass.
flatten(rewritten, reader, flatQueries, boost);
}
// if the query is already rewritten we discard it
}
// else discard queries
}
这里首先计算设置的size和getMaxSize(默认值1024, IndexSearcher.getMaxClauseCount())计算最终提取的命中关键字数量,这里最终是1024个;
这里省略了传入collectTerms的TermCollector匿名子类的实现,其余最终提取关键字数量有关;
//FieldQuery.java
@Override
public final Query rewrite(final IndexReader reader, final MultiTermQuery query)
throws IOException {
final int maxSize = Math.min(size, getMaxSize());
final PriorityQueue<ScoreTerm> stQueue = new PriorityQueue<>();
collectTerms(
reader,
query,
new TermCollector() {
................
});
.............
return build(b);
}
这里首先获取查询字段对应的所有term集合,然后获取所有的与查询匹配的term集合,最终通过传入的collector提取关键字;
//TermCollectingRewrite.java
final void collectTerms(IndexReader reader, MultiTermQuery query, TermCollector collector)
throws IOException {
IndexReaderContext topReaderContext = reader.getContext();
for (LeafReaderContext context : topReaderContext.leaves()) {
final Terms terms = context.reader().terms(query.field);
if (terms == null) {
// field does not exist
continue;
}
final TermsEnum termsEnum = getTermsEnum(query, terms, collector.attributes);
assert termsEnum != null;
if (termsEnum == TermsEnum.EMPTY) continue;
collector.setReaderContext(topReaderContext, context);
collector.setNextEnum(termsEnum);
BytesRef bytes;
while ((bytes = termsEnum.next()) != null) {
if (!collector.collect(bytes))
return; // interrupt whole term collection, so also don't iterate other subReaders
}
}
}
这里通过控制最终提取匹配查询的关键字的数量不超过maxSize;
//TopTermsRewrite.java
@Override
public boolean collect(BytesRef bytes) throws IOException {
final float boost = boostAtt.getBoost();
// make sure within a single seg we always collect
// terms in order
assert compareToLastTerm(bytes);
// System.out.println("TTR.collect term=" + bytes.utf8ToString() + " boost=" + boost + "
// ord=" + readerContext.ord);
// ignore uncompetitive hits
if (stQueue.size() == maxSize) {
final ScoreTerm t = stQueue.peek();
if (boost < t.boost) return true;
if (boost == t.boost && bytes.compareTo(t.bytes.get()) > 0) return true;
}
ScoreTerm t = visitedTerms.get(bytes);
final TermState state = termsEnum.termState();
assert state != null;
if (t != null) {
// if the term is already in the PQ, only update docFreq of term in PQ
assert t.boost == boost : "boost should be equal in all segment TermsEnums";
t.termState.register(
state, readerContext.ord, termsEnum.docFreq(), termsEnum.totalTermFreq());
} else {
// add new entry in PQ, we must clone the term, else it may get overwritten!
st.bytes.copyBytes(bytes);
st.boost = boost;
visitedTerms.put(st.bytes.get(), st);
assert st.termState.docFreq() == 0;
st.termState.register(
state, readerContext.ord, termsEnum.docFreq(), termsEnum.totalTermFreq());
stQueue.offer(st);
// possibly drop entries from queue
if (stQueue.size() > maxSize) {
st = stQueue.poll();
visitedTerms.remove(st.bytes.get());
st.termState.clear(); // reset the termstate!
} else {
st = new ScoreTerm(new TermStates(topReaderContext));
}
assert stQueue.size() <= maxSize : "the PQ size must be limited to maxSize";
// set maxBoostAtt with values to help FuzzyTermsEnum to optimize
if (stQueue.size() == maxSize) {
t = stQueue.peek();
maxBoostAtt.setMaxNonCompetitiveBoost(t.boost);
maxBoostAtt.setCompetitiveTerm(t.bytes.get());
}
}
return true;
}
通过以上分析可以看到,fvh Highlighter对multi term query的重写,直接使用MultiTermQuery.TopTermsScoringBooleanQueryRewrite,并限制只能最多提取查询关键字1024个;
五、重写可能导致的高亮问题原因分析
经过以上对查询和高亮的重写过程分析可以知道,默认情况下
query阶段提取的是命中查询的所有的关键字,具体行为可以通过rewrite参数进行定制;
Highlight阶段提取的是命中查询的关键字中的前1024个,具体行为不受rewrite参数的控制;
如果查询的字段是大文本字段,导致字段的关键字很多,就可能会出现查询命中的文档的关键字不在前1024个里边,从而导致明明匹配了文档,但是却没有返回高亮信息;
六、解决方案
- 进一步明确查询关键字,减少查询命中的关键字的数量,例如输入更多的字符,;
- 使用其他类型的查询替换multi term query;
从查询重写角度理解elasticsearch的高亮原理的更多相关文章
- 多态原理探究-从C++编译器角度理解多态的实现原理
理论知识: 当类中声明虚函数时,编译器会在类中生成一个虚函数表. 虚函数表是一个存储类成员函数指针的数据结构. 虚函数表是由编译器自动生成与维护的. virtual成员函数会被编译器放入虚函数表中. ...
- SQL Server索引视图以(物化视图)及索引视图与查询重写
本位出处:http://www.cnblogs.com/wy123/p/6041122.html 经常听Oracle的同学说起来物化视图,物化视图的作用之一就是可以实现查询重写,听起来有一种高大上的感 ...
- 转:如何学习SQL(第二部分:从关系角度理解SQL)
转自:http://blog.163.com/mig3719@126/blog/static/285720652010950825538/ 6. 从关系角度理解SQL 6.1. 关系和表 众所周知,我 ...
- 《深入理解Elasticsearch》README
书目 <深入理解ElasticSearch>拉斐尔·酷奇,马雷克·罗戈任斯基[著]张世武,余洪森,商旦[译] 机械工业出版社,2016.1 本系列包括以下8篇笔记 第01章 Elastic ...
- 深入理解ElasticSearch(PDF版 内含目录)
深入理解ElasticSearch 介绍: 本书涵盖了Elasticsearch的许多中高级功能,并介绍了缓存.ApacheLucene库以及监控等模块的内部运作机制.其中,还涉及一些实用案例,比如配 ...
- 以初学者的角度理解:SQL实现关系除法
以初学者的角度理解:SQL实现关系除法 相信各位在学习SQL的时候,由于没有一家SQL语言提供除法命令而只能自己写一个.而网上大多就是四步骤加一个模板: select distinct A.X fro ...
- 从tcp原理角度理解Broken pipe和Connection reset by peer的区别
从tcp原理角度理解Broken pipe和Connection reset by peer的区别 http://lovestblog.cn/blog/2014/05/20/tcp-broken-pi ...
- 从npm 角度理解 mvn 的 pom.xml
从npm 角度理解 mvn 的 pom.xml pom -- project object model. 用于描述项目的配置: 基础说明 依赖 如何构建运行 类似 node.js 的 package. ...
- 跟我一起读postgresql源码(三)——Rewrite(查询重写模块)
上一篇博文我们阅读了postgresql中查询分析模块的源码.查询分析模块对前台送来的命令进行词法分析.语法分析和语义分析后获得对应的查询树(Query).在获得查询树之后,程序开始对查询树进行查询重 ...
随机推荐
- Vue 源码解读(3)—— 响应式原理
前言 上一篇文章 Vue 源码解读(2)-- Vue 初始化过程 详细讲解了 Vue 的初始化过程,明白了 new Vue(options) 都做了什么,其中关于 数据响应式 的实现用一句话简单的带过 ...
- pytest--fixture基本使用(主要用来进行测试环境的初始化和清理,fixture中的params参数还可以用来进行参数化)
fixture fixture修饰器来标记固定的工厂函数,在其他函数,模块,类或整个工程调用它时会被激活并优先执行,通常会被用于完成预置处理和重复操作. 方法: fixture(scope=" ...
- [gRPC via C#] gRPC本质的探究与实践
鉴于内容过多,先上太长不看版: grpc 就是请求流&响应流特殊一点的 Http 请求,性能和 WebAPI 比起来只快在 Protobuf 上: 附上完整试验代码:GrpcWithOutSD ...
- jvm添加jmx远程监控
调JVM监控的时候需要远程连接机器,所以服务器需要开放JMX协议,配置如下. 现在我的项目是jboot-jfinal项目,用的是undertow容器,在启动脚本里面加入 JAVA_OPTS=" ...
- 基于JQuery打造无缝滚动新闻
JQuery实现 新闻无缝滚动 一.使用"首尾追加"实现无缝滚动 <head lang="en"> <meta charset="U ...
- sql 名词解析
针对这个 sql 语句进行解析 1 SELECT 2 a.* 3 , b.L12_create_time L1第一次转L2的时间 4 , ROUND(c.L1_pending/60, 2) " ...
- 2W字长文吐血整理 Docker&云原生
Docker 和 云原生 一.概念介绍 1.1 Docker Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的镜像中,然后发布到任何流行的 Linux或Win ...
- 基于kubernetes平台微服务的部署
基于kubernetes平台微服务的部署 首先下载插件: kubernetes Continuous Deploy 然后去找 .kube/ 里的config 复制里面的内容 去添加凭据: 然后就是脚本 ...
- Angular依赖注入:全面讲解(翻译中)
在实际使用Angular依赖注入系统时,你需要知道的一切都在本文中.我们将以实用易懂并附带示例的形式解释它的所有高级概念. Angular最强大.最独特的功能之一就是它内置的依赖注入系统. 大多数时候 ...
- LGP6276题解
众所周知,排列是一个置换,一个置换是一车环. 步数就是这些环长的 \(lcm\). 如果你去思考直接 DP,会发现很困难,根本设不出来状态.于是考虑正难则反:每个质数幂 \(p^k\) 对答案的贡献. ...