词云Wordcloud是文本数据的一种可视化表示方式。它通过设置不同的字体大小或颜色来表现每个术语的重要性。词云在社交媒体中被广泛使用,因为它能够让读者快速感知最突出的术语。然而,词云的输出结果没有统一的标准,也缺乏逻辑性。对于词频相差较大的词汇有较好的区分度,但对于颜色相近、频次相近的词汇来说效果并不好。因此词云不适合应用于科学绘图。本文基于python库wordcloud来绘制词云。wordcloud安装方式如下:

pip install wordcloud

0 wordcloud绘图说明

wordcloud库关于绘制词云的相关函数均由其内置类WordCloud提供。

WordCloud类初始函数如下:

WordCloud(font_path=None, width=400, height=200, margin=2,
ranks_only=None, prefer_horizontal=.9, mask=None, scale=1,
color_func=None, max_words=200, min_font_size=4,
stopwords=None, random_state=None, background_color='black',
max_font_size=None, font_step=1, mode="RGB",
relative_scaling='auto', regexp=None, collocations=True,
colormap=None, normalize_plurals=True, contour_width=0,
contour_color='black', repeat=False,
include_numbers=False, min_word_length=0, collocation_threshold=30)

初始函数参数介绍如下:

参数 类型 说明
font_path str 字体路径,中文词云绘制必须要提供字体路径
width int 输出画布宽度
height int 输出画布高度
margin int 输出画布每个词汇边框边距
prefer_horizontal float 词汇水平方向排版出现的频率
mask numpy-array 为空使用默认mask绘制词云,非空用给定mask绘制词云且宽高值将被忽略
scale float 按照比例放大画布长宽
color_func func 颜色设置函数
max_words int 最大统计词数
min_font_size int 最小字体尺寸
stopwords list 绘图要过滤的词
random_state int 随机数,主要用于设置颜色
background_color str 背景颜色
max_font_size int 最大字体尺寸
font_step int 字体步长
mode str pillow image的绘图模式
relative_scaling float 词频和字体大小的关联性
regexp str 使用正则表达式分隔输入的文本
collocations bool 是否包括两个词的搭配
colormap str 给每个单词随机分配颜色,若指定color_func,则忽略该方法
normalize_plurals bool 英文单词是否用单数替换复数
contour_width int 词云轮廓尺寸
contour_color str 词云轮廓颜色
repeat bool 是否重复输入文本直到允许的最大词数
include_numbers bool 是否包含数字作为短语
min_word_length int 单词包含最少字母数

WordCloud类提供的主要函数接口如下:

  • generate_from_frequencies(frequencies):根据词频生成词云
  • fit_words(frequencies):等同generate_from_frequencies函数
  • process_text(text):分词
  • generate_from_text(text):根据文本生成词云
  • generate(text):等同generate_from_text
  • to_image:输出绘图结果为pillow image
  • recolor:重置颜色
  • to_array:输出绘图结果为numpy array
  • to_file(filename):保存为文件
  • to_svg:保存为svg文件

1 绘图实例

1.1 单个单词绘制词云

import numpy as np
import matplotlib.pyplot as plt
from wordcloud import WordCloud text = "hello" # 返回两个数组,只不过数组维度分别为n*1 和 1* m
x, y = np.ogrid[:300, :300] # 设置绘图区域
mask = (x - 150) ** 2 + (y - 150) ** 2 > 130 ** 2
mask = 255 * mask.astype(int) # 绘制词云,repeat表示重复输入文本直到允许的最大词数max_words,scale设置放大比例
wc = WordCloud(background_color="white", repeat=True,max_words=32, mask=mask,scale=1.5)
wc.generate(text) plt.axis("off")
plt.imshow(wc, interpolation="bilinear")
plt.show() # 输出到文件
_ = wc.to_file("result.jpg")

1.2 基础绘制


from wordcloud import WordCloud # 文本地址
text_path = 'test.txt'
# 示例文本
scr_text = '''The Zen of Python, by Tim Peters Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!''' # 保存示例文本
with open(text_path,'w',encoding='utf-8') as f:
f.write(scr_text) # 读取文本
with open(text_path,'r',encoding='utf-8') as f:
# 这里text是一个字符串
text = f.read()
# 生成词云, WordCloud对输入的文本text进行切词展示。
wordcloud = WordCloud().generate(text) import matplotlib.pyplot as plt
plt.axis("off")
plt.imshow(wordcloud, interpolation='bilinear')
plt.show()

# 修改显示的最大的字体大小
wordcloud = WordCloud(max_font_size=50).generate(text) # 另外一种展示结果方式
image = wordcloud.to_image()
image.show()

1.3 自定义词云形状

from PIL import Image
import numpy as np
import matplotlib.pyplot as plt from wordcloud import WordCloud, STOPWORDS # 文本地址
text_path = 'test.txt'
# 示例文本
scr_text = '''The Zen of Python, by Tim Peters Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!''' # 保存示例文本
with open(text_path,'w',encoding='utf-8') as f:
f.write(scr_text) # 读取文本
with open(text_path,'r',encoding='utf-8') as f:
# 这里text是一个字符串
text = f.read() # 想生成带特定形状的词云,首先得准备具备该形状的mask图片
# 在mask图片中除了目标形状外,其他地方都是空白的
mask = np.array(Image.open("mask.png")) # 要跳过的词
stopwords = set(STOPWORDS)
# 去除better
stopwords.add("better") # contour_width绘制mask边框宽度,contour_color设置mask区域颜色
# 如果mask边框绘制不准,设置contour_width=0表示不绘制边框
wc = WordCloud(background_color="white", max_words=2000, mask=mask,
stopwords=stopwords, contour_width=2, contour_color='red',scale=2,repeat=True) # 生成图片
wc.generate(text) # 存储文件
wc.to_file("result.png") # 展示词云结果
plt.imshow(wc, interpolation='bilinear')
plt.axis("off")
plt.figure()
# 展示mask图片
plt.imshow(mask, cmap=plt.cm.gray, interpolation='bilinear')
plt.axis("off")
plt.show()

1.4 使用词频字典绘图

# pip install multidict安装
import multidict as multidict import numpy as np import re
from PIL import Image
from wordcloud import WordCloud
import matplotlib.pyplot as plt # 统计词频
def getFrequencyDictForText(sentence):
fullTermsDict = multidict.MultiDict()
tmpDict = {} # 按照空格分词
for text in sentence.split(" "):
# 如果匹配到相关词,就跳过,这样做可以获得定制度更高的结果
if re.match("a|the|an|the|to|in|for|of|or|by|with|is|on|that|be", text):
continue
val = tmpDict.get(text, 0)
tmpDict[text.lower()] = val + 1
# 生成词频字典
for key in tmpDict:
fullTermsDict.add(key, tmpDict[key])
return fullTermsDict def makeImage(text):
mask = np.array(Image.open("mask.png")) wc = WordCloud(background_color="white", max_words=1000, mask=mask, repeat=True)
wc.generate_from_frequencies(text) plt.imshow(wc, interpolation="bilinear")
plt.axis("off")
plt.show() # 文本地址
text_path = 'test.txt'
# 示例文本
scr_text = '''The Zen of Python, by Tim Peters Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!''' # 保存示例文本
with open(text_path,'w',encoding='utf-8') as f:
f.write(scr_text) # 读取文本
with open(text_path,'r',encoding='utf-8') as f:
# 这里text是一个字符串
text = f.read() # 获得词频字典
fullTermsDict = getFrequencyDictForText(text)
# 绘图
makeImage(fullTermsDict)

1.5 颜色更改

from PIL import Image
import numpy as np
import matplotlib.pyplot as plt from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator # 文本地址
text_path = 'test.txt'
# 示例文本
scr_text = '''The Zen of Python, by Tim Peters Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!''' # 保存示例文本
with open(text_path,'w',encoding='utf-8') as f:
f.write(scr_text) # 读取文本
with open(text_path,'r',encoding='utf-8') as f:
# 这里text是一个字符串
text = f.read() # 图片地址https://github.com/amueller/word_cloud/blob/master/examples/alice_color.png
alice_coloring = np.array(Image.open("alice_color.png"))
stopwords = set(STOPWORDS)
stopwords.add("better") wc = WordCloud(background_color="white", max_words=500, mask=alice_coloring,
stopwords=stopwords, max_font_size=50, random_state=42,repeat=True)
# 生成词云结果
wc.generate(text)
# 绘制
image = wc.to_image()
image.show() # 绘制类似alice_coloring颜色的词云图片
# 从图片中提取颜色
image_colors = ImageColorGenerator(alice_coloring)
# 重新设置词云颜色
wc.recolor(color_func=image_colors)
# 绘制
image = wc.to_image()
image.show() # 展示mask图片
plt.imshow(alice_coloring, cmap=plt.cm.gray, interpolation='bilinear')
plt.axis("off")
plt.show()

1.6 为特定词设置颜色

from wordcloud import (WordCloud, get_single_color_func)
import matplotlib.pyplot as plt # 直接赋色函数
class SimpleGroupedColorFunc(object):
def __init__(self, color_to_words, default_color):
# 特定词颜色
self.word_to_color = {word: color
for (color, words) in color_to_words.items()
for word in words}
# 默认词颜色
self.default_color = default_color def __call__(self, word, **kwargs):
return self.word_to_color.get(word, self.default_color) class GroupedColorFunc(object): def __init__(self, color_to_words, default_color):
self.color_func_to_words = [
(get_single_color_func(color), set(words))
for (color, words) in color_to_words.items()] self.default_color_func = get_single_color_func(default_color) def get_color_func(self, word):
"""Returns a single_color_func associated with the word"""
try:
color_func = next(
color_func for (color_func, words) in self.color_func_to_words
if word in words)
except StopIteration:
color_func = self.default_color_func return color_func def __call__(self, word, **kwargs):
return self.get_color_func(word)(word, **kwargs) text = """The Zen of Python, by Tim Peters
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!""" # 直接输入文本时,在统计数据时是否包括两个词的搭配
wc = WordCloud(collocations=False).generate(text.lower()) # 为特定词设置颜色
color_to_words = {
'green': ['beautiful', 'explicit', 'simple', 'sparse',
'readability', 'rules', 'practicality',
'explicitly', 'one', 'now', 'easy', 'obvious', 'better'],
'#FF00FF': ['ugly', 'implicit', 'complex', 'complicated', 'nested',
'dense', 'special', 'errors', 'silently', 'ambiguity',
'guess', 'hard']
} # 设置除特定词外其他词的颜色为grey
default_color = 'grey' # 直接赋色函数,直接按照color_to_words设置的RGB颜色绘图,输出的颜色不够精细
# grouped_color_simple = SimpleGroupedColorFunc(color_to_words, default_color) # 更精细的赋色函数,将color_to_words设置的RGB颜色转到hsv空间,然后进行绘图
grouped_color = GroupedColorFunc(color_to_words, default_color) # 应用颜色函数
wc.recolor(color_func=grouped_color) # 绘图
plt.figure()
plt.imshow(wc, interpolation="bilinear")
plt.axis("off")
plt.show()

1.7 绘制中文词云

import jieba
import matplotlib.pyplot as plt
from wordcloud import WordCloud, ImageColorGenerator
import numpy as np
# 读取文本
# 下载地址https://github.com/amueller/word_cloud/blob/master/examples/wc_cn/CalltoArms.txt
with open('CalltoArms.txt','r',encoding='utf-8') as f:
text = f.read() # 中文必须设置字体文件
# 下载地址https://github.com/amueller/word_cloud/blob/master/examples/fonts/SourceHanSerif/SourceHanSerifK-Light.otf
font_path = 'SourceHanSerifK-Light.otf' # 不用于绘制词云的词汇列表
# 下载地址https://github.com/amueller/word_cloud/blob/master/examples/wc_cn/stopwords_cn_en.txt
stopwords_path = 'stopwords_cn_en.txt'
# 词云
# 模板图片
back_coloring = np.array(Image.open("alice_color.png")) # 向jieba分词词典添加新的词语
userdict_list = ['阿Q', '孔乙己', '单四嫂子'] # 分词
def jieba_processing_txt(text):
for word in userdict_list:
jieba.add_word(word) mywordlist = []
# 分词
seg_list = jieba.cut(text, cut_all=False)
liststr = "/ ".join(seg_list) with open(stopwords_path, encoding='utf-8') as f_stop:
f_stop_text = f_stop.read()
f_stop_seg_list = f_stop_text.splitlines() for myword in liststr.split('/'):
if not (myword.strip() in f_stop_seg_list) and len(myword.strip()) > 1:
mywordlist.append(myword)
return ' '.join(mywordlist)
# 文字处理
text = jieba_processing_txt(text) # margin设置词云每个词汇边框边距
wc = WordCloud(font_path=font_path, background_color="black", max_words=2000, mask=back_coloring,
max_font_size=100, random_state=42, width=1000, height=860, margin=5,
contour_width=2,contour_color='blue') wc.generate(text) # 获得颜色
image_colors_byImg = ImageColorGenerator(back_coloring) plt.imshow(wc.recolor(color_func=image_colors_byImg), interpolation="bilinear")
plt.axis("off")
plt.figure()
plt.imshow(back_coloring, interpolation="bilinear")
plt.axis("off")
plt.show()

2 参考

[python] 基于wordcloud库绘制词云图的更多相关文章

  1. [python] 基于diagrams库绘制系统架构图

    Python的Diagrams库允许通过简单的Python代码绘制云系统架构,实现对新的系统架构进行原型设计.Diagrams的官方仓库地址见:diagrams.Diagrams的官方文档和使用示例见 ...

  2. python 绘制词云图

    1. 先下载并安装nltk包,准备一张简单的图片存入代码所在文件目录,搜集英文停用词表 import nltk nltk.download() 2. 绘制词云图 import re import nu ...

  3. Python pyecharts绘制词云图

    一.pyecharts绘制词云图WordCloud.add()方法简介 WordCloud.add()方法简介 add(name,attr,value, shape="circle" ...

  4. python 基于 wordcloud + jieba + matplotlib 生成词云

    词云 词云是啥?词云突出一个数据可视化,酷炫.以前以为很复杂,不想python已经有成熟的工具来做词云.而我们要做的就是准备关键词数据,挑一款字体,挑一张模板图片,非常非常无脑.准备好了吗,快跟我一起 ...

  5. 使用pyecharts绘制词云图-淘宝商品评论展示

    一.什么是词云图? 词云图是一种用来展现高频关键词的可视化表达,通过文字.色彩.图形的搭配,产生有冲击力地视觉效果,而且能够传达有价值的信息. 制作词云图的网站有很多,简单方便,适合小批量操作. BI ...

  6. Python基于jieba的中文词云

    今日学习了python的词云技术 from os import path from wordcloud import WordCloud import matplotlib.pyplot as plt ...

  7. 【Python成长之路】词云图制作

    [写在前面] 以前看到过一些大神制作的词云图 ,觉得效果很有意思.如果有朋友不了解词云图的效果,可以看下面的几张图(图片都是网上找到的): 网上找了找相关的软件,有些软件制作 还要付费.结果前几天在大 ...

  8. python使用turtle库绘制奥运五环

    效果图: #奥运五环 import turtle turtle.setup(1.0,1.0) #设置窗口大小 turtle.title("奥运五环") #蓝圆 turtle.pen ...

  9. [python] 基于blind-watermark库添加图片盲水印

    blind-watermark是一个能够给图片添加/解析基于频域的数字盲水印的Python库.图像水印image watermark是指在图片里添加文本或图形,以标记图片的来源.但是图像水印会破坏原图 ...

随机推荐

  1. GitLab私有化部署 - CI/CD - 持续集成/交付/部署 - 源代码托管 & 自动化部署

    预期目标 源代码管理 借助GitLab实现源代码托管,私有化部署版本,创建项目,创建用户组,分配权限,项目的签入/牵出等. 自动化部署 源代码产生变更时(如签入),自动化编译并发布到指定服务器中部署, ...

  2. C#中ref和out关键字的应用以及区别

    首先:两者都是按地址传递的,使用后都将改变原来参数的数值. 其次:ref可以把参数的数值传递进函数,但是out是要把参数清空,就是说你无法把一个数值从out传递进去的,out进去后,参数的数值为空,所 ...

  3. day45-JDBC和连接池01

    JDBC和连接池01 1.JDBC概述 基本介绍 JDBC为访问不同的数据库提供了同一的接口,为使用者屏蔽了细节问题 Java程序员使用JDBC,可以连接任何提供了jdbc驱动程序的数据库系统,从而完 ...

  4. C语言常见的八大排序(详解)

    冒泡排序 优点:写起来简单 缺点:运算量过大每两个之间就要比较一次 冒泡排序在一组需要排序的数组中,对两两数据顺序与要求顺序相反时,交换数据,使大的数据往后移,每趟排序将最大的数放在最后的位置上 如下 ...

  5. 『现学现忘』Git基础 — 37、标签tag(二)

    目录 5.共享标签 6.删除标签 7.修改标签指定提交的代码 8.标签在.git目录中的位置 9.本文中所使用到的命令 提示:接上一篇文章内容. 5.共享标签 默认情况下,git push 命令并不会 ...

  6. 15 Uncaught TypeError: Cannot set properties of null (setting ‘onclick‘)

    1.报错的代码 <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <t ...

  7. 三十五、kubernetes NameSpace介绍

    Kubernetes NameSpace 介绍 Kubernetes使用命名空间的概念帮助解决集群中在管理对象时的复杂性问题.命名空间允许将对象分组到一起,便于将它们作为一个单元进行筛选和控制.无论是 ...

  8. 六、Kubernetes节点与 Pod 亲和性

    Kubernetes节点与 Pod 亲和性 一.节点亲和性策略介绍 ​pod.spec.nodeAffinity preferredDuringSchedulingIgnoredDuringExecu ...

  9. MAUI 初体验 联合 WinForm 让家里废弃的手机当做电脑副品用起来

    软件效果图 软件架构草图 效果解释:运行 winform 端后 使用 ctrl+c 先复制任何词语,然后ctrl+空格 就可以将翻译结果显示在 安卓,IOS,windows 甚至 mac 任意客户端 ...

  10. CSS 动画一站式指南

    CSS 动画一站式指南 目录 CSS 动画一站式指南 1. CSS 动画 1.1 变换 1.1.1 变换属性介绍 1.1.2 变换动画实践 1.2 过渡 1.2.1 过渡属性介绍 1.2.2 过渡动画 ...