[python] 基于wordcloud库绘制词云图
词云Wordcloud是文本数据的一种可视化表示方式。它通过设置不同的字体大小或颜色来表现每个术语的重要性。词云在社交媒体中被广泛使用,因为它能够让读者快速感知最突出的术语。然而,词云的输出结果没有统一的标准,也缺乏逻辑性。对于词频相差较大的词汇有较好的区分度,但对于颜色相近、频次相近的词汇来说效果并不好。因此词云不适合应用于科学绘图。本文基于python库wordcloud来绘制词云。wordcloud安装方式如下:
pip install wordcloud
文章目录
0 wordcloud绘图说明
wordcloud库关于绘制词云的相关函数均由其内置类WordCloud提供。
WordCloud类初始函数如下:
WordCloud(font_path=None, width=400, height=200, margin=2,
ranks_only=None, prefer_horizontal=.9, mask=None, scale=1,
color_func=None, max_words=200, min_font_size=4,
stopwords=None, random_state=None, background_color='black',
max_font_size=None, font_step=1, mode="RGB",
relative_scaling='auto', regexp=None, collocations=True,
colormap=None, normalize_plurals=True, contour_width=0,
contour_color='black', repeat=False,
include_numbers=False, min_word_length=0, collocation_threshold=30)
初始函数参数介绍如下:
| 参数 | 类型 | 说明 |
|---|---|---|
| font_path | str | 字体路径,中文词云绘制必须要提供字体路径 |
| width | int | 输出画布宽度 |
| height | int | 输出画布高度 |
| margin | int | 输出画布每个词汇边框边距 |
| prefer_horizontal | float | 词汇水平方向排版出现的频率 |
| mask | numpy-array | 为空使用默认mask绘制词云,非空用给定mask绘制词云且宽高值将被忽略 |
| scale | float | 按照比例放大画布长宽 |
| color_func | func | 颜色设置函数 |
| max_words | int | 最大统计词数 |
| min_font_size | int | 最小字体尺寸 |
| stopwords | list | 绘图要过滤的词 |
| random_state | int | 随机数,主要用于设置颜色 |
| background_color | str | 背景颜色 |
| max_font_size | int | 最大字体尺寸 |
| font_step | int | 字体步长 |
| mode | str | pillow image的绘图模式 |
| relative_scaling | float | 词频和字体大小的关联性 |
| regexp | str | 使用正则表达式分隔输入的文本 |
| collocations | bool | 是否包括两个词的搭配 |
| colormap | str | 给每个单词随机分配颜色,若指定color_func,则忽略该方法 |
| normalize_plurals | bool | 英文单词是否用单数替换复数 |
| contour_width | int | 词云轮廓尺寸 |
| contour_color | str | 词云轮廓颜色 |
| repeat | bool | 是否重复输入文本直到允许的最大词数 |
| include_numbers | bool | 是否包含数字作为短语 |
| min_word_length | int | 单词包含最少字母数 |
WordCloud类提供的主要函数接口如下:
- generate_from_frequencies(frequencies):根据词频生成词云
- fit_words(frequencies):等同generate_from_frequencies函数
- process_text(text):分词
- generate_from_text(text):根据文本生成词云
- generate(text):等同generate_from_text
- to_image:输出绘图结果为pillow image
- recolor:重置颜色
- to_array:输出绘图结果为numpy array
- to_file(filename):保存为文件
- to_svg:保存为svg文件
1 绘图实例
1.1 单个单词绘制词云
import numpy as np
import matplotlib.pyplot as plt
from wordcloud import WordCloud
text = "hello"
# 返回两个数组,只不过数组维度分别为n*1 和 1* m
x, y = np.ogrid[:300, :300]
# 设置绘图区域
mask = (x - 150) ** 2 + (y - 150) ** 2 > 130 ** 2
mask = 255 * mask.astype(int)
# 绘制词云,repeat表示重复输入文本直到允许的最大词数max_words,scale设置放大比例
wc = WordCloud(background_color="white", repeat=True,max_words=32, mask=mask,scale=1.5)
wc.generate(text)
plt.axis("off")
plt.imshow(wc, interpolation="bilinear")
plt.show()
# 输出到文件
_ = wc.to_file("result.jpg")

1.2 基础绘制
from wordcloud import WordCloud
# 文本地址
text_path = 'test.txt'
# 示例文本
scr_text = '''The Zen of Python, by Tim Peters
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!'''
# 保存示例文本
with open(text_path,'w',encoding='utf-8') as f:
f.write(scr_text)
# 读取文本
with open(text_path,'r',encoding='utf-8') as f:
# 这里text是一个字符串
text = f.read()
# 生成词云, WordCloud对输入的文本text进行切词展示。
wordcloud = WordCloud().generate(text)
import matplotlib.pyplot as plt
plt.axis("off")
plt.imshow(wordcloud, interpolation='bilinear')
plt.show()

# 修改显示的最大的字体大小
wordcloud = WordCloud(max_font_size=50).generate(text)
# 另外一种展示结果方式
image = wordcloud.to_image()
image.show()

1.3 自定义词云形状
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
from wordcloud import WordCloud, STOPWORDS
# 文本地址
text_path = 'test.txt'
# 示例文本
scr_text = '''The Zen of Python, by Tim Peters
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!'''
# 保存示例文本
with open(text_path,'w',encoding='utf-8') as f:
f.write(scr_text)
# 读取文本
with open(text_path,'r',encoding='utf-8') as f:
# 这里text是一个字符串
text = f.read()
# 想生成带特定形状的词云,首先得准备具备该形状的mask图片
# 在mask图片中除了目标形状外,其他地方都是空白的
mask = np.array(Image.open("mask.png"))
# 要跳过的词
stopwords = set(STOPWORDS)
# 去除better
stopwords.add("better")
# contour_width绘制mask边框宽度,contour_color设置mask区域颜色
# 如果mask边框绘制不准,设置contour_width=0表示不绘制边框
wc = WordCloud(background_color="white", max_words=2000, mask=mask,
stopwords=stopwords, contour_width=2, contour_color='red',scale=2,repeat=True)
# 生成图片
wc.generate(text)
# 存储文件
wc.to_file("result.png")
# 展示词云结果
plt.imshow(wc, interpolation='bilinear')
plt.axis("off")
plt.figure()
# 展示mask图片
plt.imshow(mask, cmap=plt.cm.gray, interpolation='bilinear')
plt.axis("off")
plt.show()


1.4 使用词频字典绘图
# pip install multidict安装
import multidict as multidict
import numpy as np
import re
from PIL import Image
from wordcloud import WordCloud
import matplotlib.pyplot as plt
# 统计词频
def getFrequencyDictForText(sentence):
fullTermsDict = multidict.MultiDict()
tmpDict = {}
# 按照空格分词
for text in sentence.split(" "):
# 如果匹配到相关词,就跳过,这样做可以获得定制度更高的结果
if re.match("a|the|an|the|to|in|for|of|or|by|with|is|on|that|be", text):
continue
val = tmpDict.get(text, 0)
tmpDict[text.lower()] = val + 1
# 生成词频字典
for key in tmpDict:
fullTermsDict.add(key, tmpDict[key])
return fullTermsDict
def makeImage(text):
mask = np.array(Image.open("mask.png"))
wc = WordCloud(background_color="white", max_words=1000, mask=mask, repeat=True)
wc.generate_from_frequencies(text)
plt.imshow(wc, interpolation="bilinear")
plt.axis("off")
plt.show()
# 文本地址
text_path = 'test.txt'
# 示例文本
scr_text = '''The Zen of Python, by Tim Peters
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!'''
# 保存示例文本
with open(text_path,'w',encoding='utf-8') as f:
f.write(scr_text)
# 读取文本
with open(text_path,'r',encoding='utf-8') as f:
# 这里text是一个字符串
text = f.read()
# 获得词频字典
fullTermsDict = getFrequencyDictForText(text)
# 绘图
makeImage(fullTermsDict)

1.5 颜色更改
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
# 文本地址
text_path = 'test.txt'
# 示例文本
scr_text = '''The Zen of Python, by Tim Peters
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!'''
# 保存示例文本
with open(text_path,'w',encoding='utf-8') as f:
f.write(scr_text)
# 读取文本
with open(text_path,'r',encoding='utf-8') as f:
# 这里text是一个字符串
text = f.read()
# 图片地址https://github.com/amueller/word_cloud/blob/master/examples/alice_color.png
alice_coloring = np.array(Image.open("alice_color.png"))
stopwords = set(STOPWORDS)
stopwords.add("better")
wc = WordCloud(background_color="white", max_words=500, mask=alice_coloring,
stopwords=stopwords, max_font_size=50, random_state=42,repeat=True)
# 生成词云结果
wc.generate(text)
# 绘制
image = wc.to_image()
image.show()
# 绘制类似alice_coloring颜色的词云图片
# 从图片中提取颜色
image_colors = ImageColorGenerator(alice_coloring)
# 重新设置词云颜色
wc.recolor(color_func=image_colors)
# 绘制
image = wc.to_image()
image.show()
# 展示mask图片
plt.imshow(alice_coloring, cmap=plt.cm.gray, interpolation='bilinear')
plt.axis("off")
plt.show()



1.6 为特定词设置颜色
from wordcloud import (WordCloud, get_single_color_func)
import matplotlib.pyplot as plt
# 直接赋色函数
class SimpleGroupedColorFunc(object):
def __init__(self, color_to_words, default_color):
# 特定词颜色
self.word_to_color = {word: color
for (color, words) in color_to_words.items()
for word in words}
# 默认词颜色
self.default_color = default_color
def __call__(self, word, **kwargs):
return self.word_to_color.get(word, self.default_color)
class GroupedColorFunc(object):
def __init__(self, color_to_words, default_color):
self.color_func_to_words = [
(get_single_color_func(color), set(words))
for (color, words) in color_to_words.items()]
self.default_color_func = get_single_color_func(default_color)
def get_color_func(self, word):
"""Returns a single_color_func associated with the word"""
try:
color_func = next(
color_func for (color_func, words) in self.color_func_to_words
if word in words)
except StopIteration:
color_func = self.default_color_func
return color_func
def __call__(self, word, **kwargs):
return self.get_color_func(word)(word, **kwargs)
text = """The Zen of Python, by Tim Peters
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!"""
# 直接输入文本时,在统计数据时是否包括两个词的搭配
wc = WordCloud(collocations=False).generate(text.lower())
# 为特定词设置颜色
color_to_words = {
'green': ['beautiful', 'explicit', 'simple', 'sparse',
'readability', 'rules', 'practicality',
'explicitly', 'one', 'now', 'easy', 'obvious', 'better'],
'#FF00FF': ['ugly', 'implicit', 'complex', 'complicated', 'nested',
'dense', 'special', 'errors', 'silently', 'ambiguity',
'guess', 'hard']
}
# 设置除特定词外其他词的颜色为grey
default_color = 'grey'
# 直接赋色函数,直接按照color_to_words设置的RGB颜色绘图,输出的颜色不够精细
# grouped_color_simple = SimpleGroupedColorFunc(color_to_words, default_color)
# 更精细的赋色函数,将color_to_words设置的RGB颜色转到hsv空间,然后进行绘图
grouped_color = GroupedColorFunc(color_to_words, default_color)
# 应用颜色函数
wc.recolor(color_func=grouped_color)
# 绘图
plt.figure()
plt.imshow(wc, interpolation="bilinear")
plt.axis("off")
plt.show()

1.7 绘制中文词云
import jieba
import matplotlib.pyplot as plt
from wordcloud import WordCloud, ImageColorGenerator
import numpy as np
# 读取文本
# 下载地址https://github.com/amueller/word_cloud/blob/master/examples/wc_cn/CalltoArms.txt
with open('CalltoArms.txt','r',encoding='utf-8') as f:
text = f.read()
# 中文必须设置字体文件
# 下载地址https://github.com/amueller/word_cloud/blob/master/examples/fonts/SourceHanSerif/SourceHanSerifK-Light.otf
font_path = 'SourceHanSerifK-Light.otf'
# 不用于绘制词云的词汇列表
# 下载地址https://github.com/amueller/word_cloud/blob/master/examples/wc_cn/stopwords_cn_en.txt
stopwords_path = 'stopwords_cn_en.txt'
# 词云
# 模板图片
back_coloring = np.array(Image.open("alice_color.png"))
# 向jieba分词词典添加新的词语
userdict_list = ['阿Q', '孔乙己', '单四嫂子']
# 分词
def jieba_processing_txt(text):
for word in userdict_list:
jieba.add_word(word)
mywordlist = []
# 分词
seg_list = jieba.cut(text, cut_all=False)
liststr = "/ ".join(seg_list)
with open(stopwords_path, encoding='utf-8') as f_stop:
f_stop_text = f_stop.read()
f_stop_seg_list = f_stop_text.splitlines()
for myword in liststr.split('/'):
if not (myword.strip() in f_stop_seg_list) and len(myword.strip()) > 1:
mywordlist.append(myword)
return ' '.join(mywordlist)
# 文字处理
text = jieba_processing_txt(text)
# margin设置词云每个词汇边框边距
wc = WordCloud(font_path=font_path, background_color="black", max_words=2000, mask=back_coloring,
max_font_size=100, random_state=42, width=1000, height=860, margin=5,
contour_width=2,contour_color='blue')
wc.generate(text)
# 获得颜色
image_colors_byImg = ImageColorGenerator(back_coloring)
plt.imshow(wc.recolor(color_func=image_colors_byImg), interpolation="bilinear")
plt.axis("off")
plt.figure()
plt.imshow(back_coloring, interpolation="bilinear")
plt.axis("off")
plt.show()


2 参考
[python] 基于wordcloud库绘制词云图的更多相关文章
- [python] 基于diagrams库绘制系统架构图
Python的Diagrams库允许通过简单的Python代码绘制云系统架构,实现对新的系统架构进行原型设计.Diagrams的官方仓库地址见:diagrams.Diagrams的官方文档和使用示例见 ...
- python 绘制词云图
1. 先下载并安装nltk包,准备一张简单的图片存入代码所在文件目录,搜集英文停用词表 import nltk nltk.download() 2. 绘制词云图 import re import nu ...
- Python pyecharts绘制词云图
一.pyecharts绘制词云图WordCloud.add()方法简介 WordCloud.add()方法简介 add(name,attr,value, shape="circle" ...
- python 基于 wordcloud + jieba + matplotlib 生成词云
词云 词云是啥?词云突出一个数据可视化,酷炫.以前以为很复杂,不想python已经有成熟的工具来做词云.而我们要做的就是准备关键词数据,挑一款字体,挑一张模板图片,非常非常无脑.准备好了吗,快跟我一起 ...
- 使用pyecharts绘制词云图-淘宝商品评论展示
一.什么是词云图? 词云图是一种用来展现高频关键词的可视化表达,通过文字.色彩.图形的搭配,产生有冲击力地视觉效果,而且能够传达有价值的信息. 制作词云图的网站有很多,简单方便,适合小批量操作. BI ...
- Python基于jieba的中文词云
今日学习了python的词云技术 from os import path from wordcloud import WordCloud import matplotlib.pyplot as plt ...
- 【Python成长之路】词云图制作
[写在前面] 以前看到过一些大神制作的词云图 ,觉得效果很有意思.如果有朋友不了解词云图的效果,可以看下面的几张图(图片都是网上找到的): 网上找了找相关的软件,有些软件制作 还要付费.结果前几天在大 ...
- python使用turtle库绘制奥运五环
效果图: #奥运五环 import turtle turtle.setup(1.0,1.0) #设置窗口大小 turtle.title("奥运五环") #蓝圆 turtle.pen ...
- [python] 基于blind-watermark库添加图片盲水印
blind-watermark是一个能够给图片添加/解析基于频域的数字盲水印的Python库.图像水印image watermark是指在图片里添加文本或图形,以标记图片的来源.但是图像水印会破坏原图 ...
随机推荐
- UML类中的6种关系
最近现看Java设计模式,但是越看越不明白,一直搞不明白类与类之前的关系有哪些,通过几天的学习与整理通过代码实现的UML画图的方式理解类之间的相互关系. 一.类与类6大关系: 泛化(generaliz ...
- 什么是Scrum?Scrum的核心要点和精髓
有点长,期望你能通过本文彻底了解 Scrum. 上一篇文章<研发效能组织能力建设之特性团队FeatureTeam(上)>,我们介绍了一个非常有意思且高效的组织模式-特性团队.我们首先介绍了 ...
- SpringBoot 2.5.5整合轻量级的分布式日志标记追踪神器TLog
TLog能解决什么痛点 随着微服务盛行,很多公司都把系统按照业务边界拆成了很多微服务,在排错查日志的时候.因为业务链路贯穿着很多微服务节点,导致定位某个请求的日志以及上下游业务的日志会变得有些困难. ...
- Redis 常见问题-缓存穿透
问题描述: * 针对 DB 中不存在的数据源,每次请求缓存和数据库都不存在 造成后果: * 应用服务器压力变大 * Redis 命中率大幅度降低 * `数据库压力巨增甚至 down 掉`* 该现象对于 ...
- offset新探索:双管齐下,加速大数据量查询
摘要:随着offset的增加,查询的时长也会越来越长.当offset达到百万级别的时候查询时长通常是业务所不能容忍的. 本文分享自华为云社区<offset新探索:双管齐下,加速大数据量查询> ...
- 解决ffmpeg的播放摄像头的延时优化问题(项目案例使用有效)
在目前的项目中使用了flv的播放摄像头的方案,但是延时达到了7-8秒,所以客户颇有微词,没有办法,只能开始优化播放延时的问题,至于对接摄像头的方案有好几种,这种咱们以后在聊,今天只要聊聊聊优化参数的问 ...
- Flutter 构建windows应用
Flutter Windows 桌面端支持进入稳定版 | Flutter 中文文档 | Flutter 中文开发者网站 从2.10之后的版本,flutter已经正式支持构建windows应用.不过距离 ...
- Elasticsearch Analyzer 内置分词器
Elasticsearch Analyzer 内置分词器 篇主要介绍一下 Elasticsearch中 Analyzer 分词器的构成 和一些Es中内置的分词器 以及如何使用它们 前置知识 es 提供 ...
- Seata 1.5.2 源码学习
文章有点长,我决定用半个小时来给您分享~ 基于Seata 1.5.2,项目中用 seata-spring-boot-starter 1. SeataDataSourceAutoConfiguratio ...
- Go语言核心36讲05
你已经使用过Go语言编写了小命令(或者说微型程序)吗? 当你在编写"Hello, world"的时候,一个源码文件就足够了,虽然这种小玩意儿没什么用,最多能给你一点点莫名的成就感. ...