假设数据集是独立同分布的,可以将数据集划分为不同的比例:Train Set and Test Set.

同时在Train Set and Test Set上做精度测试,或者隔一段时间在Test Set上做测试,来判断训练模型是否发生过拟合,受否需要提前的终止,目的是选择最好的模型参数。(严格的说,其实应该是Validation)

严格的会分为三部分:Train Set; Validation Set(提前终止,提高泛化能力); Test Set(不会得到)

K-fold cross-validation:每个数据都有可能back propagation。

换着方式取Train Set,将能利用的数据都利用起来:

减缓过拟合的方法:

1) regularization

2)momentum

3)Learning rate tunning

4)Early Stopping

5)Dropout

pytorch和tensorflow中的Dropout参数含义是不同的

Overfitting & Train Set & Test Set的更多相关文章

  1. 11 Clever Methods of Overfitting and how to avoid them

    11 Clever Methods of Overfitting and how to avoid them Overfitting is the bane of Data Science in th ...

  2. DL4J (DeepLearning for java)

    http://deeplearning4j.org/lstm.html A Beginner’s Guide to Recurrent Networks and LSTMs Contents Feed ...

  3. 训练集(train set) 验证集(validation set) 测试集(test set)

    转自:http://www.cnblogs.com/xfzhang/archive/2013/05/24/3096412.html 在有监督(supervise)的机器学习中,数据集常被分成2~3个, ...

  4. 深度学习(一)cross-entropy softmax overfitting regularization dropout

    一.Cross-entropy 我们理想情况是让神经网络学习更快 假设单模型: 只有一个输入,一个神经元,一个输出   简单模型: 输入为1时, 输出为0 神经网络的学习行为和人脑差的很多, 开始学习 ...

  5. AI - TensorFlow - 过拟合(Overfitting)

    过拟合 过拟合(overfitting,过度学习,过度拟合): 过度准确地拟合了历史数据(精确的区分了所有的训练数据),而对新数据适应性较差,预测时会有很大误差. 过拟合是机器学习中常见的问题,解决方 ...

  6. tensorflow学习之(八)使用dropout解决overfitting(过拟合)问题

    #使用dropout解决overfitting(过拟合)问题 #如果有dropout,在feed_dict的参数中一定要加入dropout的值 import tensorflow as tf from ...

  7. 4 TensorFlow入门之dropout解决overfitting问题

    ------------------------------------ 写在开头:此文参照莫烦python教程(墙裂推荐!!!) ---------------------------------- ...

  8. 【Hazard of Overfitting】林轩田机器学习基石

    首先明确了什么是Overfitting 随后,用开车的例子给出了Overfitting的出现原因 出现原因有三个: (1)dvc太高,模型过于复杂(开车开太快) (2)data中噪声太大(路面太颠簸) ...

  9. 学习笔记(三): Generalization/Overfitting/Validation

      目录 Generalization: Peril of Overfitting Low loss, but still a bad model? How Do We Know If Our Mod ...

随机推荐

  1. 《手把手教你》系列基础篇(九十五)-java+ selenium自动化测试-框架之设计篇-java实现自定义日志输出(详解教程)

    1.简介 前面宏哥一连几篇介绍如何通过开源jar包Log4j.jar.log4j2.jar和logback实现日志文件输出,Log4j和logback确实很强大,能生成三种日志文件,一种是保存到磁盘的 ...

  2. 【Java分享客栈】一文搞定京东零售开源的AsyncTool,彻底解决异步编排问题。

    一.前言 本章主要是承接上一篇讲CompletableFuture的文章,想了解的可以先去看看案例: https://juejin.cn/post/7091132240574283813 Comple ...

  3. 【面试普通人VS高手系列】讲一下wait和notify这个为什么要在synchronized代码块中?

    一个工作七年的小伙伴,竟然不知道"wait"和"notify"为什么要在Synchronized代码块里面. 好吧,如果屏幕前的你也不知道,请在评论区打上&qu ...

  4. Flutter 状态管理框架 Provider 和 Get 分析

    文/ Nayuta,CFUG 社区 状态管理一直是 Flutter 开发中一个火热的话题.谈到状态管理框架,社区也有诸如有以 Get.Provider 为代表的多种方案,它们有各自的优缺点. 面对这么 ...

  5. Redis设计与实现2.1:数据库和事件

    数据库和事件 这是<Redis设计与实现>系列的文章,系列导航:Redis设计与实现笔记 数据库 数据库的结构定义在 redis.h/redisServer 这个结构体中,这个结构体有许多 ...

  6. NoClassDefFoundError问题

    问题: 遇到一个问题,报NoClassDefFoundError,如下图: NoClassDefFoundError和ClassNotFoundException区别 我们经常被java.lang.C ...

  7. 好客租房2-React概述

    1.1什么是react React是一个用于构建用户界面的javascript库 用户界面:HTML页面 React主要用来HTML 或者沟通构建web应用 如果从MVC的角度来看 react仅仅是从 ...

  8. bind-utils-测试域名解析

    bind-utils是一个网络管理类工具集,其集成了我们常用的命令"nslookup",我们可以使用诊断域名解析情况. 1.安装bind-utils [root@localhost ...

  9. JAVA - 缓冲和缓存

    JAVA - 缓冲和缓存 缓冲 Buffer 功能:协调上下层应用之间的性能差异.通过缓冲区的缓冲,当上层组件性能优于下层组件的时候,缓冲可以有效减少上层组件对下层组件的等待时间. 使用场景:IO流中 ...

  10. FFT 小记

    写在前面 \(Q:\) 为什么会心血来潮去学 FFT \(A:\) 当本蒟蒻还在努力消化凸包时:.所以本蒟蒻也来看一下 等等 摸头警告 .思维已经废了 About FFT FFT( \(Fast\ F ...