We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect. 
Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000. 

Input

The first line contains an integer N between 1 and 10 describing how many pairs of lines are represented. The next N lines will each contain eight integers. These integers represent the coordinates of four points on the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines represents two lines on the plane: the line through (x1,y1) and (x2,y2) and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).

Output

There should be N+2 lines of output. The first line of output should read INTERSECTING LINES OUTPUT. There will then be one line of output for each pair of planar lines represented by a line of input, describing how the lines intersect: none, line, or point. If the intersection is a point then your program should output the x and y coordinates of the point, correct to two decimal places. The final line of output should read "END OF OUTPUT".

Sample Input

5
0 0 4 4 0 4 4 0
5 0 7 6 1 0 2 3
5 0 7 6 3 -6 4 -3
2 0 2 27 1 5 18 5
0 3 4 0 1 2 2 5

Sample Output

INTERSECTING LINES OUTPUT
POINT 2.00 2.00
NONE
LINE
POINT 2.00 5.00
POINT 1.07 2.20
END OF OUTPUT

求交点的水题

列一下直线的解析式推一下公式就行了

需要注意的是如果用斜率式要注意斜率不存在的情况 啊我好菜我都不记得直线别的解析式要怎么搞了

嗯觉得我写题目的速度实在是太慢了 今天过来也没有要读题结果这种水题还写了这么久

#include <iostream>
#include<stdio.h>
#include<math.h>
#define inf 0x3f3f3f3f using namespace std; struct point{
double x, y;
};
struct line{
point st, ed;
double k, b;
}; double getk(line a)
{
point ed = a.ed, st = a.st;
if(ed.x == st.x)return inf;
double k = (ed.y - st.y)/ (ed.x - st.x);
return k;
} double getb(line a)
{
point ed = a.ed, st = a.st;
if(ed.x == st.x)return -inf;
double b = st.y - st.x * a.k;
return b;
} point inter(line a, line b)
{
point p1 = a.st, p2 = a.ed, p3 = b.st, p4 = b.ed;
point in;
in.x = (p2.x - p1.x) * (p4.x - p3.x) * (p3.y - p1.y) + (p4.x - p3.x) * (p2.y - p1.y) * p1.x - (p2.x - p1.x) * (p4.y - p3.y) * p3.x;
in.x = in.x / ((p4.x - p3.x) * (p2.y - p1.y) - (p2.x - p1.x) * (p4.y - p3.y));
in.y = a.k * in.x + a.b;
return in;
} int n;
point a, b, c, d;
line l1, l2;
int main()
{
while(scanf("%d",&n) != EOF){
cout<<"INTERSECTING LINES OUTPUT\n";
for(int i = 0; i < n; i++){
cin>>a.x>>a.y>>b.x>>b.y>>c.x>>c.y>>d.x>>d.y;
l1.st = a;l1.ed = b;
l2.st = c;l2.ed = d;
l1.k = getk(l1);l1.b = getb(l1);
l2.k = getk(l2);l2.b = getb(l2);
if(l1.k == l2.k){
if(l1.k == inf){
if(l1.st.x == l2.st.x){
cout<<"LINE\n";
}
else{
cout<<"NONE\n";
}
}
else if(l1.b == l2.b){
cout<<"LINE\n";
}
else{
cout<<"NONE\n";
}
}
else if(l1.k == inf){
point ans;
ans.x = l1.st.x;
ans.y = l2.k * ans.x + l2.b;
printf("POINT %.2f %.2f\n", ans.x, ans.y);
}
else if(l2.k == inf){
point ans;
ans.x = l2.st.x;
ans.y = l1.k * ans.x + l1.b;
printf("POINT %.2f %.2f\n", ans.x, ans.y);
}
else{
point ans = inter(l1, l2);
printf("POINT %.2f %.2f\n", ans.x, ans.y);
} }
cout<<"END OF OUTPUT\n";
}
return 0;
}

poj1269 intersecting lines【计算几何】的更多相关文章

  1. POJ P2318 TOYS与POJ P1269 Intersecting Lines——计算几何入门题两道

    rt,计算几何入门: TOYS Calculate the number of toys that land in each bin of a partitioned toy box. Mom and ...

  2. POJ1269:Intersecting Lines(判断两条直线的关系)

    题目:POJ1269 题意:给你两条直线的坐标,判断两条直线是否共线.平行.相交,若相交,求出交点. 思路:直线相交判断.如果相交求交点. 首先先判断是否共线,之后判断是否平行,如果都不是就直接求交点 ...

  3. POJ 1269 Intersecting Lines --计算几何

    题意: 二维平面,给两条线段,判断形成的直线是否重合,或是相交于一点,或是不相交. 解法: 简单几何. 重合: 叉积为0,且一条线段的一个端点到另一条直线的距离为0 不相交: 不满足重合的情况下叉积为 ...

  4. POJ1269 Intersecting Lines[线段相交 交点]

    Intersecting Lines Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 15145   Accepted: 66 ...

  5. [poj1269]Intersecting Lines

    题目大意:求两条直线的交点坐标. 解题关键:叉积的运用. 证明: 直线的一般方程为$F(x) = ax + by + c = 0$.既然我们已经知道直线的两个点,假设为$(x_0,y_0), (x_1 ...

  6. POJ1269 Intersecting Lines 2017-04-16 19:43 50人阅读 评论(0) 收藏

    Intersecting Lines Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 15478   Accepted: 67 ...

  7. POJ 1269 Intersecting Lines(计算几何)

    题意:给定4个点的坐标,前2个点是一条线,后2个点是另一条线,求这两条线的关系,如果相交,就输出交点. 题解:先判断是否共线,我用的是叉积的性质,用了2遍就可以判断4个点是否共线了,在用斜率判断是否平 ...

  8. POJ1269:Intersecting Lines——题解

    http://poj.org/problem?id=1269 题目大意:给四个点,求前两个点所构成的直线和后两个点所构成的直线的位置关系(平行,重合,相交),如果是相交,输出交点坐标. ——————— ...

  9. ●POJ 1269 Intersecting Lines

    题链: http://poj.org/problem?id=1269 题解: 计算几何,直线交点 模板题,试了一下直线的向量参数方程求交点的方法. (方法详见<算法竞赛入门经典——训练指南> ...

随机推荐

  1. selenium +chrome headless Adhoc模式渲染网页

    mannual和adhoc模式比较 Manual vs. Adhoc In the script above, we start the ChromeDriver server process whe ...

  2. MTK 永不熄屏

    步骤一: 源码/frameworks/base/packages/SettingsProvider/res/values/defaults.xml 修改<integername=</int ...

  3. 7 -- Spring的基本用法 -- 10... 获取其他Bean的属性值;获取Field值;获取任意方法的返回值

    7.10 高级依赖关系配置 组件与组件之间的耦合,采用依赖注入管理:但基本类型的成员变量值,应直接在代码中设置. Spring支持将任意方法的返回值.类或对象的Field值.其他Bean的getter ...

  4. ios开发之--UITextField光标右移

    有时候,我们直接使用TF进行操作,有时候需要裁剪,但是裁剪后,光标还是置顶的,很不美观,解决办法: // 设置一个空白View,15.0就是这块View的宽度width,也是光标的位置,根据需要设定大 ...

  5. Exception occurred while processing this request, check the log for more information!安装ActiveMq-5.14.1 配置安全验证报错解决

    安装ActiveMq-5.14.1  并配置了安全验证成功后,客户端也连接成功了.服务端也能通过http://IP:8161登录到控制台. 但是在点击队列,想要查看队列视图时报错,如下图: 查看日志发 ...

  6. Qt打包部署程序自动查找依赖DLL工具windeployqt

    qt编译好一个exe程序之后,部署到一台没有开发环境的机器上,需要一起拷贝其依赖的dll文件.这时需要一个windeployqt工具来帮忙,因为手动拷贝的话容易遗漏. https://blog.csd ...

  7. 《C++标准程序库》笔记之三

    本篇博客笔记顺序大体按照<C++标准程序库(第1版)>各章节顺序编排. ---------------------------------------------------------- ...

  8. Netty《一》

    作者:郭无心链接:https://www.zhihu.com/question/24322387/answer/78947405来源:知乎著作权归作者所有,转载请联系作者获得授权. Netty是什么? ...

  9. 告知你不为人知的UDP-疑难杂症和使用

    版权声明:本文由黄日成原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/848077001486437077 来源:腾云阁 h ...

  10. 有关xml中的xmlns

    1. xmlns "xmlns"是XHTML namespace的缩写,叫做"名字空间"声明.名字空间是什么作用呢?我的理解是:由于xml允许你自己定义自己的标 ...