机器学习总结-LR(对数几率回归)
LR(对数几率回归)
函数为\(y=f(x)=\frac{1}{1+e^{-(w^{T}x+b)}}\)。 由于输出的是概率值\(p(y=1|x)=\frac{e^{w^{T}x+b}}{1+e^{w^{T}x+b}},p(y=0|x)=\frac{1}{1+e^{w^{T}x+b}}\),所以求解使用极大似然估计来求解参数\(w,b\)。
为了方便表示,记\(\widehat{w}=(w;b),\widehat{x}=(x;1)\)
写出似然函数\[\prod_{i=1}^{m}p(y=1|\widehat{x}_{i},\widehat{w})^{y_{i}}p(y=0|\widehat{x}_{i},\widehat{w})^{1-y_{i}}\]
对数似然函数\[ l(\widehat{w})=\sum_{i=1}^{m}y_{i}\ln p(y=1|\widehat{x}_{i},\widehat{w})+(1-y_{i})\ln p(y=0|\widehat{x}_{i},\widehat{w})\]
\[ l(\widehat{w})=\sum_{i=1}^{m}y_{i}(\widehat{w}^{T}\widehat{x}_{i})-\ln (1+e^{\widehat{w}^{T}\widehat{x}_{i}})\]
要让每个样本属于其真实值的概率越大越好,故对\(-l(\widehat{w})\)最小化,由于\(l(\widehat{w})\)是关于\(\widehat{w}\)的高阶可导连续函数,可用梯度下降法和牛顿法求解,最优解为\[\widehat{w}^{*}=\underset{\widehat{w}}{\arg min}-l(\widehat{w})\]
机器学习总结-LR(对数几率回归)的更多相关文章
- 对数几率回归法(梯度下降法,随机梯度下降与牛顿法)与线性判别法(LDA)
本文主要使用了对数几率回归法与线性判别法(LDA)对数据集(西瓜3.0)进行分类.其中在对数几率回归法中,求解最优权重W时,分别使用梯度下降法,随机梯度下降与牛顿法. 代码如下: #!/usr/bin ...
- 对数几率回归(逻辑回归)原理与Python实现
目录 一.对数几率和对数几率回归 二.Sigmoid函数 三.极大似然法 四.梯度下降法 四.Python实现 一.对数几率和对数几率回归 在对数几率回归中,我们将样本的模型输出\(y^*\)定义 ...
- 学习笔记TF009:对数几率回归
logistic函数,也称sigmoid函数,概率分布函数.给定特定输入,计算输出"success"的概率,对回题回答"Yes"的概率.接受单个输入.多维数据或 ...
- 机器学习-对数logistics回归
今天 学习了对数几率回归,学的不是很明白x1*theat1+x2*theat2...=y 对于最终的求解参数编程还是不太会,但是也大致搞明白了,对数几率回归是由于线性回归函数的结果并不是我们想要的,我 ...
- 机器学习5- 对数几率回归+Python实现
目录 1. 对数几率回归 1.1 求解 ω 和 b 2. 对数几率回归进行垃圾邮件分类 2.1 垃圾邮件分类 2.2 模型评估 混淆举证 精度 交叉验证精度 准确率召回率 F1 度量 ROC AUC ...
- LR(逻辑回归)
逻辑回归(Logistic regression): 想要理解LR,只需要记住: Sigmoid 函数: y=1/(1+e-z) 线性回归模型: y=wTx+b 最后: y= 1/(1+e-(wTx+ ...
- Coursera公开课笔记: 斯坦福大学机器学习第六课“逻辑回归(Logistic Regression)” 清晰讲解logistic-good!!!!!!
原文:http://52opencourse.com/125/coursera%E5%85%AC%E5%BC%80%E8%AF%BE%E7%AC%94%E8%AE%B0-%E6%96%AF%E5%9D ...
- 机器学习笔记(4):多类逻辑回归-使用gluton
接上一篇机器学习笔记(3):多类逻辑回归继续,这次改用gluton来实现关键处理,原文见这里 ,代码如下: import matplotlib.pyplot as plt import mxnet a ...
- 机器学习(四)—逻辑回归LR
逻辑回归常见问题:https://www.cnblogs.com/ModifyRong/p/7739955.html 推导在笔记上,现在摘取部分要点如下: (0) LR回归是在线性回归模型的基础上,使 ...
随机推荐
- HashMap,HashTable 区别,实现原理。
HashMap是HashTable 的轻量级,非线程安全的,都是实现了map接口 区别:hashmap 允许空键值对的存在,非线程安全,效率高于hashtable,因为hashtable 是synch ...
- 《深入理解 Java 虚拟机》读书笔记:虚拟机性能监控与故障处理工具
正文 一.JDK 的命令行工具 JDK 的 bin 目录下提供了一些用于监视虚拟机和故障处理的命令行工具. 名称 主要作用 jps JVM Process Status Tool,显示正在运行的虚拟机 ...
- 基于C#的机器学习--垃圾邮件过滤
在这一章,我们将建立一个垃圾邮件过滤分类模型.我们将使用一个包含垃圾邮件和非垃圾邮件的原始电子邮件数据集,并使用它来训练我们的ML模型.我们将开始遵循上一章讨论的开发ML模型的步骤.这将帮助我们理解工 ...
- Go 每日一库之 go-ini
简介 ini 是 Windows 上常用的配置文件格式.MySQL 的 Windows 版就是使用 ini 格式存储配置的. go-ini是 Go 语言中用于操作 ini 文件的第三方库. 本文介绍g ...
- cogs 1176. [郑州101中学] 月考 字典树
1176. [郑州101中学] 月考 ★★☆ 输入文件:mtest.in 输出文件:mtest.out 简单对比时间限制:1 s 内存限制:128 MB [题目描述] 在上次的月考中B ...
- fill 的用法
博客 : http://blog.csdn.net/liuchuo/article/details/52296646 fill函数的作用是:将一个区间的元素都赋予val值.函数参数:fill(vec. ...
- 1z0-062 题库解析6
You want execution of large database operations to suspend, and then resume, in the event of space a ...
- mongdb角色的授权
开启cmd窗口切换到cd D:\programs\mongoDB\bin D:\programs\mongoDB\bin>mongo MongoDB shell version v3.4.6 c ...
- 阿里fastjson解析
解析案例 String object="{total=1, rows=[{_Account=3646808, UserID=131514, Mt4Name=SewwoaIQQS, Serve ...
- 学习 lind layerdiagram 第三弹