为什么样本方差的分母是n-1?为什么它又叫做无偏估计?
为什么样本方差的分母是n-1?最简单的原因,是因为因为均值已经用了n个数的平均来做估计在求方差时,只有(n-1)个数和均值信息是不相关的。而你的第n个数已经可以由前(n-1)个数和均值 来唯一确定,实际上没有信息量。所以在计算方差时,只除以(n-1)。
那么更严格的证明呢?请耐心的看下去。
样本方差计算公式里分母为的目的是为了让方差的估计是无偏的。
无偏的估计(unbiased estimator)比有偏估计(biased estimator)更好是符合直觉的,尽管有的统计学家认为让mean square error即MSE最小才更有意义,这个问题我们不在这里探讨;不符合直觉的是,为什么分母必须得是而不是才能使得该估计无偏。
首先,我们假定随机变量的数学期望是已知的,然而方差未知。在这个条件下,根据方差的定义我们有
由此可得
因此
是方差的一个无偏估计,注意式中的分母不偏不倚正好是!这个结果符合直觉,并且在数学上也是显而易见的。
现在,我们考虑随机变量的数学期望是未知
的情形。这时,我们会倾向于无脑直接用样本均值
替换掉上面式子中的
。这样做有什么后果呢?后果就是,如果直接使用
作为估计,那么你会倾向于低估方差!这是因为:
换言之,除非正好,否则我们一定有
而不等式右边的那位才是的对方差的“正确”估计!这个不等式说明了,为什么直接使用
会导致对方差的低估。
那么,在不知道随机变量真实数学期望的前提下,如何“正确”的估计方差呢?答案是把上式中的分母n换成n-1,通过这种方法把原来的偏小的估计“放大”一点点,我们就能获得对方差的正确估计了:
至于为什么分母是n-1而不是n-2或者别的什么数,最好还是去看真正的数学证明,因为数学证明的根本目的就是告诉人们“为什么”;暂时我没有办法给出更“初等”的解释了。
更多机器学习、编程、AI相关知识,也欢迎关注我的公众号“图灵的猫”。关注公众号,点击“学习资料”菜单,即可获得海量机器学习、深度学习书籍等免费PDF资源~
为什么样本方差的分母是n-1?为什么它又叫做无偏估计?的更多相关文章
- 为什么样本方差自由度(分母)为n-1
一.概念.条件及目的 1.概念 要理解样本方差的自由度为什么是n-1,得先理解自由度的概念: 自由度,是指附加给独立的观测值的约束或限制的个数,即一组数据中可以自由取值的个数. 2.成立条件 所谓自由 ...
- 为什么样本方差分母是n-1
https://blog.csdn.net/qq_39521554/article/details/79633207 为什么样本方差的分母是n-1?为什么它又叫做无偏估计? 至于为什么是n-1,可以看 ...
- 样本方差的无偏估计与(n-1)的由来
一.无偏估计 所谓总体参数估计量的无偏性指的是,基于不同的样本,使用该估计量可算出多个估计值,但它们的平均值等于被估参数的真值. 在某些场合下,无偏性的要求是有实际意义的.例如,假设在某厂商与某销售商 ...
- mode|平均数|方差|标准差|变异系数|四分位数|几何平均数|异众比率|偏态|峰态
应用统计学 数据的概括性度量 集中趋势 Mode众数是唯一描述无序类别数据,由图可知众数便是图形中的峰. 对于类别变量,众数就是某一种类别. 中位数和平均数都可能不是样本中的值. 中位数不受极值影响, ...
- 样本方差:为嘛分母是n-1
在样本方差计算式中,我们使用Xbar代替随机变量均值μ. 容易证明(参考随便一本会讲述样本方差的教材),只要Xbar不等于μ,sigma(Xi-Xbar)2必定小于sigma(Xi-μ)2. 然而,要 ...
- 为什么样本方差(sample variance)的分母是 n-1?
为什么样本方差(sample variance)的分母是 n-1? (補充一句哦,題主問的方差 estimator 通常用 moments 方法估計.如果用的是 ML 方法,請不要多想不是你們想的那樣 ...
- 为什么方差的分母有时是n,有时是n-1 源于总体方差和样本方差的不同
为什么样本方差(sample variance)的分母是 n-1? 样本方差计算公式里分母为n-1的目的是为了让方差的估计是无偏的.无偏的估计(unbiased estimator)比有偏估计(bia ...
- 为什么样本方差除以(n-1)而不是n ?(自由度)
不记得第几次看见样本方差的公式,突然好奇为什么要除以(n-1)而不是n呢?看见一篇文章从定义上和无偏估计推导上讲的很清楚https://blog.csdn.net/fuming2021118535/a ...
- 样本服从正态分布,证明样本容量n乘样本方差与总体方差之比服从卡方分布x^2(n)
样本服从正态分布,证明样本容量n乘样本方差与总体方差之比服从卡方分布x^2(n) 正态分布的n阶中心矩参见: http://www.doc88.com/p-334742692198.html
随机推荐
- Git Commit Message 规范
今天来说说团队开发中,对于 Git commit message 规范问题. 社区上有各种 Commit message 的规范,本文介绍 Angular 规范,目前使用较广,比较合理和系统化,并且有 ...
- supersockets扩展服务器配置
关键字: 扩展配置, 自定义配置, 自定义属性, GetChildConfig, 读取配置,子节点 当你使用 SuperSocket 实现 Socket 服务器的时候,不可避免的需要在配置文件中定义一 ...
- 2019-1-16-git-subtree-pull-错误-Working-tree-has-modifications
title author date CreateTime categories git subtree pull 错误 Working tree has modifications lindexi 2 ...
- H3C 帧中继基本配置命令(续)
- squid+iptables实现网关防火墙
需求说明:此服务器用作网关.MAIL(开启web.smtp.pop3).FTP.DHCP服务器,内部一台机器(192.168.0.254)对外提供dns服务,为了不让无意者轻易看出此服务器开启了ssh ...
- Springboot-webscoket with sockjs
新建springboot maven工程,引入以下包 <dependency> <groupId>org.springframework.boot</groupId> ...
- [Ramda] Handle Errors in Ramda Pipelines with tryCatch
Handling your logic with composable functions makes your code declarative, leading to code that's ea ...
- Apply,Call,bind对比
apply.call call和apply都是为了改变上下文背景存在的,即改变函数内部指向 javascript一大特点是函数存在定义时的上下文,运行时的上下文和上下文可改变的概念 apply.cal ...
- 关于axios的一些封装
关于Axios的封装 为何需要在封装 应用场景,项目中涉及100个AJAX请求,其中: 1.其中60个需要在请求头header设置token headers: {token: token}用于权限校验 ...
- dotnet 通过 WMI 获取系统信息
本文告诉大家如何通过 WMI 获取系统信息 通过 Win32_OperatingSystem 可以获取系统信息 var mc = "Win32_OperatingSystem"; ...