Catalog API简介

Spark中的DataSet和Dataframe API支持结构化分析。结构化分析的一个重要的方面是管理元数据。这些元数据可能是一些临时元数据(比如临时表)、SQLContext上注册的UDF以及持久化的元数据(比如Hivemeta store或者HCatalog)。

Spark的早期版本是没有标准的API来访问这些元数据的。用户通常使用查询语句(比如show tables)来查询这些元数据。这些查询通常需要操作原始的字符串,而且不同元数据类型的操作也是不一样的。

这种情况在Spark 2.0中得到改变。Spark 2.0中添加了标准的API(称为catalog)来访问Spark SQL中的元数据。这个API既可以操作Spark SQL,也可以操作Hive元数据。

访问Catalog

Catalog可以通过SparkSession获取,下面代码展示如何获取Catalog:

import org.apache.spark.sql.SparkSession

val sparkSession = SparkSession.builder.appName("example").enableHiveSupport().getOrCreate()

val catalog = sparkSession.catalog

访问databases

我们一旦创建好catalog对象之后,我们可以使用它来查询元数据中的数据库,catalog上的API返回的结果全部都是dataset。

scala> catalog.listDatabases().show(false)

+----------+--------------------+--------------------+
| name| description | locationUri |
+----------+--------------------+--------------------+
|data_clean| |hdfs://asiainfo-1...|
|default |Default Hive data...|hdfs://asiainfo-1...|
+----------+--------------------+--------------------+ scala> catalog.listDatabases().select("name").show(false)
+-----------------------+
|name |
+-----------------------+
|iteblog |
|default |
+-----------------------+

listDatabases返回元数据中所有的数据库。

默认情况下,元数据仅仅只有名为default的数据库。如果是Hive元数据,那么它会从Hive元数据中获取所有的数据库。listDatabases返回的类型是dataset,所以我们可以使用Dataset上的所有操作来查询元数据。

使用createTempView注册Dataframe

在Spark的早期版本,我们使用registerTempTable来注册Dataframe。然而在Spark 2.0中,这个API已经被遗弃了。registerTempTable名字很让人误解,因为用户会认为这个函数会将Dataframe持久化并且保证这个临时表,但是实际上并不是这样的,所以社区才有意将它替换成createTempViewcreateTempView的使用方法如下:

df.createTempView("temp")

查询表

正如我们可以展示出元数据中的所有数据库一样,我们也可以展示出元数据中某个数据库中的表。它会展示出Spark SQL中所有注册的临时表。同时可以展示出Hive中默认数据库(也就是default)中的表。如下:

scala> catalog.listTables().select("name").show(false)
+----------------------------------------+
|name |
+----------------------------------------+
|city_to_level |
|table2 |
|test |
|ticket_order |
|tmp1_result |
+----------------------------------------+

判断某个表是否缓存

我们可以使用Catalog提供的API来检查某个表是否缓存。如下:

scala> println(catalog.isCached("temp"))
false

上面判断temp表是否缓存,结果输出false。默认情况下表是不会被缓存的,我们可以手动缓存某个表,如下:

scala>  df.cache()
res4: df.type = [_c0: string, _c1: string ... more fields] scala> println(catalog.isCached("temp"))
true

现在iteblog表已经被缓存了,所有现在的输出结构是true。

删除view

我们可以使用catalog提供的API来删除view。如果是Spark SQL情况,那么它会删除事先注册好的view;如果是hive情况,那么它会从元数据中删除表。

 scala> catalog.dropTempView("iteblog"

查询已经注册的函数

我们不仅可以使用Catalog API操作表,还可以用它操作UDF。下面代码片段展示SparkSession上所有已经注册号的函数,当然也包括了Spark内置的函数。

scala> catalog.listFunctions().select("name","className","isTemporary").show(, false)

+---------------------+-----------------------------------------------------------------------+-----------+
|name                 |className                                                              |isTemporary|
+---------------------+-----------------------------------------------------------------------+-----------+
|!                    |org.apache.spark.sql.catalyst.expressions.Not                          |true       |
|%                    |org.apache.spark.sql.catalyst.expressions.Remainder                    |true       |
|&                    |org.apache.spark.sql.catalyst.expressions.BitwiseAnd                   |true       |
|*                    |org.apache.spark.sql.catalyst.expressions.Multiply                     |true       |
|+                    |org.apache.spark.sql.catalyst.expressions.Add                          |true       |
+---------------------+-----------------------------------------------------------------------+-----------+

参考:https://blog.csdn.net/pengzonglu7292/article/details/81044857

spark SQL之Catalog API使用的更多相关文章

  1. Spark SQL 编程API入门系列之Spark SQL支持的API

    不多说,直接上干货! Spark SQL支持的API SQL DataFrame(推荐方式,也能执行SQL) Dataset(还在发展) SQL SQL 支持basic SQL syntax/Hive ...

  2. Spark学习之路(九)—— Spark SQL 之 Structured API

    一.创建DataFrame和Dataset 1.1 创建DataFrame Spark中所有功能的入口点是SparkSession,可以使用SparkSession.builder()创建.创建后应用 ...

  3. Spark 系列(九)—— Spark SQL 之 Structured API

    一.创建DataFrame和Dataset 1.1 创建DataFrame Spark 中所有功能的入口点是 SparkSession,可以使用 SparkSession.builder() 创建.创 ...

  4. Spark记录-org.apache.spark.sql.hive.HiveContext与org.apache.spark.sql.SQLContext包api分析

    HiveContext/SQLContext val hiveContext=new HiveContext(new SparkContext(new SparkConf().setAppName(& ...

  5. 平易近人、兼容并蓄——Spark SQL 1.3.0概览

    自2013年3月面世以来,Spark SQL已经成为除Spark Core以外最大的Spark组件.除了接过Shark的接力棒,继续为Spark用户提供高性能的SQL on Hadoop解决方案之外, ...

  6. 【转载】Spark SQL 1.3.0 DataFrame介绍、使用

    http://www.aboutyun.com/forum.php?mod=viewthread&tid=12358&page=1 1.DataFrame是什么?2.如何创建DataF ...

  7. Spark SQL 编程

    Spark SQL的依赖 Spark SQL的入口:SQLContext 官方网站参考 https://spark.apache.org/docs/1.6.2/sql-programming-guid ...

  8. win7下本地运行spark以及spark.sql.warehouse.dir设置

    SparkSession spark = SparkSession .builder() .master("local[*]") .enableHiveSupport() .con ...

  9. Spark SQL 之自定义删除外部表

    前言 Spark SQL 在删除外部表时,本不能删除外部表的数据的.本篇文章主要介绍如何修改Spark SQL 源码实现在删除外部表的时候,可以带额外选项来删除外部表的数据. 本文的环境是我一直使用的 ...

随机推荐

  1. visual_c++外挂教程(详细)

    课程分四个大章节 初级篇,中级篇,进阶篇,高级篇 初级篇内容:编写一个完整的,简单的外挂 C++的数据类型:Byte,Word,DWORD,int,float API函数的调mouse_event,G ...

  2. [NOIP模拟测试7]visit 题解(组合数学+CRT+Lucas定理)

    Orz 因为有T的限制,所以不难搞出来一个$O(T^3)$的暴力dp 但我没试 据说有30分? 正解的话显然是组合数学啦 首先$n,m$可能为负,但这并没有影响, 我们可以都把它搞成正的 即都看作向右 ...

  3. plsql初次连接oracle报错解决方案

    windows7 64bit Oracle win64 11gR2(两个文件) PL/SQL v9.0 详细错误信息 Initialization error Could not initialize ...

  4. arttemplate02

    1.后台传来的数据 { "code": 200, "checkRecords": [ { "id": "402881e75cc80 ...

  5. leetcode 596 BUG笔记

    There is a table courses with columns: student and class Please list out all classes which have more ...

  6. ActionContext 与 ServletActionContext获取Session的异同

    1. ActionContext 在Struts2开发中,除了将请求参数自动设置到Action的字段中,我们往往也需要在Action里直接获取请求(Request)或会话(Session)的一些信息, ...

  7. 将某个Qt4项目升级到Qt5遇到的问题

    本文转载自http://hi.baidu.com/xchinux/item/9044d8ce986accbb0d0a7b87 一.将某个QT4项目改成QT5遇到的问题 该Qt4项目以前是使用Qt4.7 ...

  8. Day 20: 面向对象【多态,封装,反射】字符串模块导入/内置attr /包装 /授权

    面向对象,多态: 有时一个对象会有多种表现形式,比如网站页面有个按钮, 这个按钮的设计可以不一样(单选框.多选框.圆角的点击按钮.直角的点击按钮等),尽管长的不一样,但它们都有一个共同调用方式,就是o ...

  9. 我只会用threading,我菜

    #服务端 import socket import threading # import multiprocessing server=socket.socket(socket.AF_INET,soc ...

  10. 55-Ubuntu-软件安装

    1.通过apt安装/卸载软件 apt是advanced packaging tool, 是Linux下的一款安装包管理工具. 可以在终端中方便的安装/卸载/更新软件包. (1)安装软件 sudo ap ...