Keras高层API之Metrics
在tf.keras中,metrics其实就是起到了一个测量表的作用,即测量损失或者模型精度的变化。metrics的使用分为以下四步:
step1:Build a meter
acc_meter = metrics.Accuracy()
loss_meter = metrics.Mean()
step2:Update data
loss_meter.update_state(loss)
acc_meter.update_state(y,pred)
step3:Get Average data
print(step,'loss:',loss_meter.result().numpy())
print(step,'Evaluate Acc:',total_correct/total,acc_meter.result().numpy())
清除缓存:
if step % 100 == 0:
print(step,'loss:',loss_meter.result().numpy())
loss_meter.reset_states() if step % 500 ==0:
total,total_correct = 0.,0
acc_meter.reset_states()
实战:
import tensorflow as tf
from tensorflow.keras import datasets, layers, optimizers, Sequential, metrics def preprocess(x, y): x = tf.cast(x, dtype=tf.float32) / 255.
y = tf.cast(y, dtype=tf.int32) return x,y batchsz = 128
(x, y), (x_val, y_val) = datasets.mnist.load_data()
print('datasets:', x.shape, y.shape, x.min(), x.max()) db = tf.data.Dataset.from_tensor_slices((x,y))
db = db.map(preprocess).shuffle(60000).batch(batchsz).repeat(10) ds_val = tf.data.Dataset.from_tensor_slices((x_val, y_val))
ds_val = ds_val.map(preprocess).batch(batchsz) network = Sequential([layers.Dense(256, activation='relu'),
layers.Dense(128, activation='relu'),
layers.Dense(64, activation='relu'),
layers.Dense(32, activation='relu'),
layers.Dense(10)])
network.build(input_shape=(None, 28*28))
network.summary() optimizer = optimizers.Adam(lr=0.01) acc_meter = metrics.Accuracy()
loss_meter = metrics.Mean() for step, (x,y) in enumerate(db): with tf.GradientTape() as tape:
# [b, 28, 28] => [b, 784]
x = tf.reshape(x, (-1, 28*28))
# [b, 784] => [b, 10]
out = network(x)
# [b] => [b, 10]
y_onehot = tf.one_hot(y, depth=10)
# [b]
loss = tf.reduce_mean(tf.losses.categorical_crossentropy(y_onehot, out, from_logits=True)) loss_meter.update_state(loss) grads = tape.gradient(loss, network.trainable_variables)
optimizer.apply_gradients(zip(grads, network.trainable_variables)) if step % 100 == 0: print(step, 'loss:', loss_meter.result().numpy())
loss_meter.reset_states() # evaluate
if step % 500 == 0:
total, total_correct = 0., 0
acc_meter.reset_states() for step, (x, y) in enumerate(ds_val):
# [b, 28, 28] => [b, 784]
x = tf.reshape(x, (-1, 28*28))
# [b, 784] => [b, 10]
out = network(x) # [b, 10] => [b]
pred = tf.argmax(out, axis=1)
pred = tf.cast(pred, dtype=tf.int32)
# bool type
correct = tf.equal(pred, y)
# bool tensor => int tensor => numpy
total_correct += tf.reduce_sum(tf.cast(correct, dtype=tf.int32)).numpy()
total += x.shape[0] acc_meter.update_state(y, pred) print(step, 'Evaluate Acc:', total_correct/total, acc_meter.result().numpy())
Keras高层API之Metrics的更多相关文章
- 手写数字识别——利用keras高层API快速搭建并优化网络模型
在<手写数字识别——手动搭建全连接层>一文中,我们通过机器学习的基本公式构建出了一个网络模型,其实现过程毫无疑问是过于复杂了——不得不考虑诸如数据类型匹配.梯度计算.准确度的统计等问题,但 ...
- Keras函数式 API
用Keras定义网络模型有两种方式, Sequential 顺序模型 Keras 函数式 API模型 之前我们介绍了Sequential顺序模型,今天我们来接触一下 Keras 的函数式API模型. ...
- Flask 框架下 Jinja2 模板引擎高层 API 类——Environment
Environment 类版本: 本文所描述的 Environment 类对应于 Jinja2-2.7 版本. Environment 类功能: Environment 是 Jinja2 中的一个 ...
- 【小白学PyTorch】21 Keras的API详解(下)池化、Normalization层
文章来自微信公众号:[机器学习炼丹术].作者WX:cyx645016617. 参考目录: 目录 1 池化层 1.1 最大池化层 1.2 平均池化层 1.3 全局最大池化层 1.4 全局平均池化层 2 ...
- TensorFlow 1.4利用Keras+Estimator API进行训练和预测
Tensorflow 1.4中,Keras作为作为核心模块可以直接通过tf.keas进行调用,但是考虑到keras对tfrecords文件进行操作比较麻烦,而将keras模型转成tensorflow中 ...
- Kera高层API
目录 Keras != tf.keras Outline1 Metrics Step1.Build a meter Step2.Update data Step3.Get Average data C ...
- 【小白学PyTorch】21 Keras的API详解(上)卷积、激活、初始化、正则
[新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑答疑解惑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx6450 ...
- 小白如何学习PyTorch】25 Keras的API详解(下)缓存激活,内存输出,并发解决
[新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑答疑解惑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx6450 ...
- Tcl脚本调用高层API实现仪表使用和主机创建配置的自己主动化測试用例
#设置Chassis的基本參数,包含IP地址.port的数量等等 set chassisAddr 10.132.238.190 set islot 1 set portList {11 12} ;#端 ...
随机推荐
- 题解【RQNOJ PID497 0/1字串问题】
\[ \texttt{Description} \] 编程找出符合下列条件的字符串:①字符串中仅包含 0 和 1 两个字符:②字符串的长度为 n :③字符串中不包含连续重复三次的子串. \[ \tex ...
- Linux命令行与Shell脚本编程大全
快来参加<Linux命令行与Shell脚本编程大全>学习吧,提升技能,展示自我. 点击链接即可进入学习:https://s.imooc.com/WTmCO6H 课程亮点适合零基础读者,从零 ...
- 微信支付v3版本NET 图片上传API
最近在写特约服务商进件的由于微信官方没有DEMO,导致踩了很多坑,特把自己经验分享给大家. 注意几点: 1.上传图片签名不是把所有body内容都进行签名,只需签名计算的请求主体为meta的json串: ...
- redis基础知识汇总
- lwip netbuf
lwip2.0.2 netbuf_new——分配netbuf结构体的内存. netbuf_alloc,分配netbuf中pbuf内存(pbuf_alloc中PBUF_RAM类型,包括pbuf结构体和p ...
- leetcode—js—Add Two Numbers
You are given two non-empty linked lists representing two non-negative integers. The digits are stor ...
- 一种高灵敏度自带DSP降噪算法的音频采集解决方案
背景调研 随着AI渗透到各行各业,人们对语音的需求也越来越大,最近一两年,各种AI音频设备如雨后春笋般冒出.各种智能AI设备的推出,意味者市场对低成本的音频采集设备越来越多.针对这种情况,我们开发 ...
- pikachu-远程代码、命令执行漏洞(RCE)
一.RCE概述 1.1 什么是RCE? RCE漏洞,可以让攻击者直接向后台服务器远程注入操作系统命令或者代码,从而控制后台系统. 1.2 远程系统命令执行 一般出现这种漏洞,是因为应用系统从设计上需要 ...
- Centos7 使用Docker 部署mssql 2017
mssql是.NET的标配,一般使用.NET的人基本都用mssql. 以前mssql只能支持windows平台,从微软打出 拥抱开源 的口号开始,mssql的2017 版本,开始支持linux系统. ...
- 浅析 .NET 中 AsyncLocal 的实现原理
目录 前言 1.线程本地存储 2.AsyncLocal 实现 2.1.主体 AsyncLocal<T> 2.2.AsyncLocal<T> 在 ExecutionContext ...