题意

liu_runda曾经是个喜欢切数数题的OIer,往往看到数数题他就开始刚数数题.于是liu_runda出了一个数树题.听说OI圈子珂学盛行,他就在题目名字里加了珂学二字.一开始liu_runda想让选手数n个节点的不同构的二叉树的数目.
但是liu_runda虽然退役已久,也知道答案就是Catalan(n),这太裸了,出出来一定会被挂起来裱.因此他把题目加强.我们从二叉树的根节点出发一直向右儿子走到不能再走为止,可以找到最右下方的节点v,这个节点是没有右儿子的.
如果根节点和v不相同,我们就把根节点和根节点的右儿子断开,让根节点的右儿子成为新的根节点,同时把根节点接在v的右儿子位置.根节点的左儿子此时仍然挂在根节点上.
这样的操作可以进行多次.如果两棵二叉树能通过若干次这样的操作变得同构,我们也认为它们是同构的.
问在这种新的定义下有多少n个节点的本质不同的二叉树.答案可能很大,所以只需要输出对998244353取模后的结果

做法

考虑把二叉树定义一种与括号序列一一映射的关系:"(左子树),右子树",\(n\)个点映射为\(2n\)长度的合法括号序列
这样按题意连接,相当于把前面第一个括号整个部分移动到序列的右边
将其本质不同一一映射为:\(01\)序列(\(n\)个\(0\),\(n\)个\(1\))循环移位本质不同

置换有\(2n\)个,枚举循环移位\(i\),将序列划分为\((2n,i)\)个等价类

  • 根据裴蜀定理,\(i\)为奇数时不合法
  • \(i\)为偶数时,方案数为\(\binom{(2n,i)}{(2n,i)/2}\)

则答案为\(\frac{1}{2n}\sum\limits_{i=0}^{2n-1} \binom{(2n,i)}{(2n,i)/2}\)

题外话

这题挺简单的,考虑清楚第一步就好了(这里纠结了很久)

JZOJ5988 珂学计树题的更多相关文章

  1. jzoj5988. 【WC2019模拟2019.1.4】珂学计树题 (burnside引理)

    传送门 题面 liu_runda曾经是个喜欢切数数题的OIer,往往看到数数题他就开始刚数数题.于是liu_runda出了一个数树题.听说OI圈子珂学盛行,他就在题目名字里加了珂学二字.一开始liu_ ...

  2. JZOJ 5988 珂学计树题 (Burnside引理)

    什么神题a-没学过Burnside引理a学了也做不来系列-考场没怎么看这题,上最后十分钟打了样例就溜了-然后这题爆0了. Here CODE #include <cctype> #incl ...

  3. Comet OJ - Contest #14 转转的数据结构题 珂朵莉树+树状数组

    题目链接: 题意:有两个操作 操作1:给出n个操作,将区间为l到r的数字改为x 操作2:给出q个操作,输出进行了操作1中的第x到x+y-1操作后的结果 解法: 把询问离线,按照r从小到大排序 每次询问 ...

  4. CF896C Willem, Chtholly and Seniorious(珂朵莉树)

    中文题面 珂朵莉树的板子……这篇文章很不错 据说还有奈芙莲树和瑟尼欧里斯树…… 等联赛考完去学一下(逃 //minamoto #include<bits/stdc++.h> #define ...

  5. 洛谷AT2342 Train Service Planning(思维,动态规划,珂朵莉树)

    洛谷题目传送门 神仙思维题还是要写点东西才好. 建立数学模型 这种很抽象的东西没有式子描述一下显然是下不了手的. 因为任何位置都以\(k\)为周期,所以我们只用关心一个周期,也就是以下数都在膜\(k\ ...

  6. [转]我的数据结构不可能这么可爱!——珂朵莉树(ODT)详解

    参考资料: Chtholly Tree (珂朵莉树) (应某毒瘤要求,删除链接,需要者自行去Bilibili搜索) 毒瘤数据结构之珂朵莉树 在全是珂学家的珂谷,你却不知道珂朵莉树?来跟诗乃一起学习珂朵 ...

  7. 洛谷P2082 区间覆盖(加强版)(珂朵莉树)

    传送门 虽然是黄题而且还是一波离散就能解决的东西 然而珂朵莉树还是很好用 相当于一开始区间全为0,然后每一次区间赋值,问最后总权值 珂朵莉树搞一搞就好了 //minamoto #include< ...

  8. 洛谷P2572 [SCOI2010]序列操作(珂朵莉树)

    传送门 珂朵莉树是个吼东西啊 这题线段树代码4k起步……珂朵莉树只要2k…… 虽然因为这题数据不随机所以珂朵莉树的复杂度实际上是错的…… 然而能过就行对不对…… (不过要是到时候noip我还真不敢打… ...

  9. CF915E Physical Education Lessons(珂朵莉树)

    中文题面 据说正解是动态开点线段树而且标记也不难下传的样子 然而这种区间推平的题目还是喜欢写珂朵莉树啊……码量小…… 虽然真要构造的话随便卡…… //minamoto #include<cstd ...

随机推荐

  1. Python原来这么好学-1.1节: 在windows中安装Python

    这是一本教同学们彻底学通Python的高质量学习教程,认真地学习每一章节的内容,每天只需学好一节,帮助你成为一名卓越的Python程序员: 本教程面向的是零编程基础的同学,非科班人士,以及有一定编程水 ...

  2. JavaWeb前置知识 : 动态和静态的区别、两种架构、常见状态码

    JavaWeb程序设计(一) : 前置知识 1.动态网页与静态网页的区别: a.不要和是否有"动感"混为一谈. b.是否随着时间.地点.用户操作的改变而改变 (例如 : 在百度上搜 ...

  3. 机器学习(ML)十四之凸优化

    优化与深度学习 优化与估计 尽管优化方法可以最小化深度学习中的损失函数值,但本质上优化方法达到的目标与深度学习的目标并不相同. 优化方法目标:训练集损失函数值 深度学习目标:测试集损失函数值(泛化性) ...

  4. Generator - Python 生成器

    Generator, python 生成器, 先熟悉一下儿相关定义, generator function 生成器函数, 生成器函数是一个在定义体中存有 'yield' 关键字的函数. 当生成器函数被 ...

  5. Zookeeper 应用实例

    配置管理 程序总是需要配置的,如果程序分散部署在多台机器上,要逐个改变配置就变得困难.好吧,现在把这些配置全部放到zookeeper上去,保存在 Zookeeper 的某个目录节点中,然后所有相关应用 ...

  6. Apache 安装 静态编译 动态编译

    2014-09-19 09:53 (分类:Linux) 排名第一的web服务器. (linux环境:CentOS release 6.5 (Final)) 安装出错:如下 configure: err ...

  7. (四)开源C# WPF控件库《AduSkin – UI》

    微信公众号:[Dotnet9的博客],网站:[Dotnet9],问题或建议:[请网站留言], 如果对您有所帮助:[欢迎赞赏]. 开源C# WPF控件库系列: (一)开源C# WPF控件库<Mat ...

  8. 头部布局,搜索验证和AJAX自动搜索提示,并封装成组件,提高代码复用性

    index.html 头部区结构和样式 效果图 静态样式 index.html中的部分 <!-- 头部 --> <div class="header"> & ...

  9. HA: Dhanush Vulnhub Walkthrough

    靶机下载链接: https://www.vulnhub.com/entry/ha-dhanush,396/ 主机扫描: 主机端口扫描: HTTP目录爬取 使用dirb dirsearch 爬取均未发现 ...

  10. ungetc--C语言中处理字符串常碰到的问题

    如图,在学习C++速成课的时候发现了这个神奇的函数ungetc(),视频的UP主给的注释是将变量(字符串)中存放的字符退回给stdin输入流.这是什么意思 看UP主的函数 在上面getchar()是用 ...