这样想象一下,直线上的一个点在垂直于直线的方向上有最强的梯度。沿着直线的方向梯度较低,意思是直线上的像素点与它周围的像素点看起来相似。我们进行的角点检测是梯度强度明显高于其他像素的点,可能就是目标处的拐点。它的这个特性可以被应用到同一场景的多视角检测及运动中估计。
$${\rm{c}}(x,y,\Delta x,\Delta y) = {\sum\limits_{(i,j) \in W(x,y)} {W(i,j)(I(i,j) - I(i + \Delta x,j + \Delta y))} ^2}$$

  W(x,y)是一个小窗口N*N的局部正方形图像,要检测的角点就存在于这个局部图形中,对于图像强度I(x,y),计算结果只是点(x,y)处的图像与位移变化处的平方差加权和。W(i,j)是高斯加权,保证靠近窗口中心的平方差比离中心远的平方差权重更大。由于变化量很小,用一阶偏导数表示。自相关形式如下表示(一阶泰勒近似):
$${\rm{c}}(x,y,\Delta x,\Delta y) = \left[ {\begin{array}{*{20}{c}}
{\Delta x}&{\Delta y}
\end{array}} \right]M(x,y)\left[ {\begin{array}{*{20}{c}}
{\Delta x}\\
{\Delta y}
\end{array}} \right]$$

  M(x,y)为自相关矩阵Ix,Iy为I(x,y)在x和y方向的一阶偏导数。
\[{\rm{M(x,y)}} = \sum\limits_{ - K \le i,j \le K} {W(i,j)} \left[ {\begin{array}{*{20}{c}}
{I_x^2(x + i,y + j)}&{{I_x}(x + i,y + j){I_y}(x + i,y + j)}\\
{{I_x}(x + i,y + j){I_y}(x + i,y + j)}&{I_y^2(x + i,y + j)}
\end{array}} \right]\]

  角点是自相关矩阵中具有两个大的特征值的位置,实际意义是,在不考虑图片旋转的情况下,两个大的特征值表示在任何方向上移动一小段距离都会造成图像改变。Harris的定义如下:
\[{\rm{H = }}\det (M) - ktrac{e^2}(M) = {\lambda _1}{\lambda _2} - k{({\lambda _1} + {\lambda _2})^2}\]

  通过搜索该函数的局部最大值找到关键角点(k为灵敏度)。检测结果如下图所示:

cornerHarris(dst,aim,blocksize,ksize,k,BORDER_DEFAULT);
关键参数说明:blocksize表示邻域的大小,ksize表示Sobel算子的卷积核大小,k表示公式中的Harris灵敏度.
  • 参考代码如下:
 #include<opencv2/opencv.hpp>
#include<iostream> using namespace cv;
using namespace std;
int init_value = ;
int max_value = ;
void Harris_Demo(int, void*);
Mat src, dst;
int main(int argc,char** argv)
{ src = imread("H:/cv_code/image/home.jpg");
if (src.empty())
{
printf("could not find image");
return -;
}
namedWindow("src",CV_WINDOW_AUTOSIZE);
imshow("src",src); cvtColor(src,dst,COLOR_BGR2GRAY);
namedWindow("huidu", CV_WINDOW_AUTOSIZE);
imshow("huidu", dst); namedWindow("output", CV_WINDOW_AUTOSIZE);
createTrackbar("value:","output",&init_value,max_value,Harris_Demo);
Harris_Demo(,);
waitKey();
return ;
}
void Harris_Demo(int, void*)
{
Mat aim, norm_dst, normsc_dst;
aim = Mat::zeros(src.size(),CV_32FC1);
int blocksize = ;
int ksize = ;
double k = 0.04;
cornerHarris(dst,aim,blocksize,ksize,k,BORDER_DEFAULT); normalize(aim,norm_dst,,,NORM_MINMAX,CV_32FC1,Mat());
convertScaleAbs(norm_dst,normsc_dst); Mat resulting = src.clone();
for (int row = ; row < norm_dst.rows; row++)
{ for (int col = ; col < norm_dst.cols; col++)
{ if ((int)norm_dst.at<float>(row,col)> init_value+)
circle(resulting,Point(col,row),,Scalar(,,),,,); } }
imshow("output",resulting);
}

Harris角点检测理论的更多相关文章

  1. Opencv学习笔记------Harris角点检测

    image算法测试iteratoralgorithmfeatures 原创文章,转载请注明出处:http://blog.csdn.net/crzy_sparrow/article/details/73 ...

  2. 第十一节、Harris角点检测原理(附源码)

    OpenCV可以检测图像的主要特征,然后提取这些特征.使其成为图像描述符,这类似于人的眼睛和大脑.这些图像特征可作为图像搜索的数据库.此外,人们可以利用这些关键点将图像拼接起来,组成一个更大的图像,比 ...

  3. OpenCV Harris 角点检测子

    Harris 角点检测子 目标 本教程中我们将涉及: 有哪些特征?它们有什么用? 使用函数 cornerHarris 通过 Harris-Stephens方法检测角点. 理论 有哪些特征? 在计算机视 ...

  4. Harris角点检测原理详解

    http://blog.csdn.net/lwzkiller/article/details/54633670 关于角点的应用在图像处理上比较广泛,如图像匹配(FPM特征点匹配).相机标定等.网上也有 ...

  5. OpenCV计算机视觉学习(13)——图像特征点检测(Harris角点检测,sift算法)

    如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 前言 ...

  6. Harris角点检测算法优化

    Harris角点检测算法优化 一.综述 用 Harris 算法进行检测,有三点不足:(1 )该算法不具有尺度不变性:(2 )该算法提取的角点是像素级的:(3 )该算法检测时间不是很令人满意. 基于以上 ...

  7. Harris角点检测

    代码示例一: #include<opencv2/opencv.hpp> using namespace cv; int main(){ Mat src = imread(); imshow ...

  8. Harris 角点检测

    一 .Motivation 对于做图像处理的人来说,Harris角点检测肯定听过,1988年发表的文章"A combined corner and edge detector"描述 ...

  9. Harris角点检测算原理

    主要参考了:http://blog.csdn.net/yudingjun0611/article/details/7991601  Harris角点检测算子 本文将该文拷贝了过来,并做了一些数学方面的 ...

随机推荐

  1. Maven 阿里云仓库地址

    https://maven.aliyun.com/mvn/view 一般使用聚合仓库(group),path是仓库地址.可点击右上角“使用指南”: 附   目前阿里云仓库的地址 https://mav ...

  2. java 企业 网站源码 模版 屏幕自适应 有前后台 springmvc SSM 生成静态化

    前台: 支持四套模版, 可以在后台切换 系统介绍: 1.网站后台采用主流的 SSM 框架 jsp JSTL,网站后台采用freemaker静态化模版引擎生成html 2.因为是生成的html,所以访问 ...

  3. Notability

    Notability 上课记笔记.听网课→Notability 有录音功能, 在原来笔记中新添加空白行(选中之后下移) Notability常用的功能总结 1.纸张有颜色2.荧光笔会盖住文字3.套索工 ...

  4. Travase Objects and four method of array

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  5. 《自拍教程18》adb_Android设备debug连接工具

    adb命令介绍 做Android App测试,Android手机系统测试, 还有很多Android终端产品(手表,车载,智能电视,智能手表等) 都必须用adb命令,通过USB接口,与Android设备 ...

  6. Umi 小白纪实(一)—— 创建项目&常用配置

    umi 是一个企业级 react 应用框架,也是蚂蚁金服的底层前端框架 <蚂蚁金服的前端框架和工程化实践> 一.安装脚手架 在创建项目之前,需要保证有 node 8.10 以上的环境 可以 ...

  7. aov.h-1.1

    //AOV网与拓扑排序类 #ifndef _AOV_H_ #define _AOV_H_ #include<iostream> #include<cstdio> #includ ...

  8. java Socket通信,客户端与服务端相互发消息

    1.通信过程 网络分为应用层,http.ssh.telnet就是属于这一类,建立在传输层的基础上.其实就是定义了各自的编码解码格式,分层如下: 2.Socket连接 上述通信都要先在传输层有建立连接的 ...

  9. Mybaits(10)N+1问题

    N+1问题 从上面的例子日志中我们可以看到所有级联都成功了,但是引发了性能问题,例如我们在查询雇员的信息和工作任务信息,此时体检表和工牌信息就是多余,我们没必要查询一次.如果想日志体现的那样,取出了所 ...

  10. Magento 2 中请求( Request ) 后执行的基本过程

    入口 :index.php 引导 Bootstrap::run()  定义于 ./vendor/magento/framework/App/Bootstrap.php 用于 index.php 应用 ...