题目描述

金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:

主件 附件

电脑 打印机,扫描仪

书柜 图书

书桌 台灯,文具

工作椅 无

如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有0个、1个或2个附件。附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的N元。于是,他把每件物品规定了一个重要度,分为5等:用整数1~5表示,第5等最重要。他还从因特网上查到了每件物品的价格(都是10元的整数倍)。他希望在不超过N元(可以等于N元)的前提下,使每件物品的价格与重要度的乘积的总和最大。

设第j件物品的价格为v[j],重要度为w[j],共选中了k件物品,编号依次为j1,j2,……,jk,则所求的总和为:

v[j1]*w[j1]+v[j2]*w[j2]+ …+v[jk]*w[jk]。(其中*为乘号)

请你帮助金明设计一个满足要求的购物单。

输入输出格式

输入格式:

输入的第1行,为两个正整数,用一个空格隔开:

N m (其中N(<32000)表示总钱数,m(<60)为希望购买物品的个数。)

从第2行到第m+1行,第j行给出了编号为j-1的物品的基本数据,每行有3个非负整数

v p q (其中v表示该物品的价格(v<10000),p表示该物品的重要度(1~5),q表示该物品是主件还是附件。如果q=0,表示该物品为主件,如果q>0,表示该物品为附件,q是所属主件的编号)

输出格式:

输出只有一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(<200000)。

输入输出样例

输入样例#1:

1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0
输出样例#1:

2200

说明

NOIP 2006 提高组 第二题

dp 可以选的组合有

重要物品  重要物品+附件1   重要物品+附件2   重要物品+附件1+附件2

四种选择,那么dp方程就有了也就是01背包问题了

#include<cstdio>
#include<iostream>
using namespace std;
const int N = ;
int n,m;
int vul[N],w[N];
int vul1[N],w1[N];
int vul2[N],w2[N];
int dp[]; int v,p,q;
int cnt=;
int main()
{
scanf("%d%d",&n,&m);
for (int i=;i<=m;i++)
{
scanf("%d%d%d",&v,&p,&q);
v/=;
if (q)
if (vul1[q]) vul2[q]=v,w2[q]=p*v;
else vul1[q]=v,w1[q]=p*v;
else
vul[i]=v,
w[i]=v*p,
cnt=i;
}
for (int i=;i<=cnt;i++)
{
for (int j=n/;j>=vul[i];j--)
{
dp[j]=max(dp[j],dp[j-vul[i]]+w[i]);
if(j-vul[i]-vul1[i]>=) dp[j]=max(dp[j],dp[j-vul[i]-vul1[i]]+w[i]+w1[i]);
if(j-vul[i]-vul2[i]>=) dp[j]=max(dp[j],dp[j-vul[i]-vul2[i]]+w[i]+w2[i]);
if(j-vul[i]-vul1[i]-vul2[i]>=) dp[j]=max(dp[j],dp[j-vul[i]-vul1[i]-vul2[i]]+w[i]+w1[i]+w2[i]);
}
}
printf("%d\n",dp[n/]*);
return ;
}

luogu P1064 金明的预算方案的更多相关文章

  1. Luogu 1064 金明的预算方案 / CJOJ 1352 [NOIP2006] 金明的预算方案(动态规划)

    Luogu 1064 金明的预算方案 / CJOJ 1352 [NOIP2006] 金明的预算方案(动态规划) Description 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己 ...

  2. 有依赖的背包---P1064 金明的预算方案

    P1064 金明的预算方案 solution 1 暴搜 70pt dfs (当前搜到了第几个物品,产生的总价值,剩下多少钱) 剪枝 1:如果剩下的钱数<0,直接return就好,没必要继续了 剪 ...

  3. 【dp】P1064 金明的预算方案

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NN元钱就行”. ...

  4. 洛谷P1064 金明的预算方案

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NN元钱就行”. ...

  5. 洛谷 P1064 金明的预算方案【有依赖的分组背包】

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:"你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱 ...

  6. P1064 金明的预算方案 (分组背包稍稍变形)

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NN元钱就行”. ...

  7. 洛谷 P1064 金明的预算方案

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”.今 ...

  8. 洛谷 P1064 金明的预算方案 (有依赖的0/1背包)

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NN元钱就行”. ...

  9. 【洛谷】P1064 金明的预算方案(dp)

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”.今 ...

随机推荐

  1. JQuery用鼠标选文字来发新浪微博

    最近注意到新浪博客有个小功能,就是当鼠标选中一段文字时会浮现一个小图片,点击这个图片可以把选中内容发送到新浪微博,一时兴起昨晚就写了一个Demo玩了一下,代码超简单,没优化,有兴趣的朋友可以自己改进. ...

  2. Unescape JavaScript's escape() using C#

    js里面的 unescape escape 对应C#里面 var unescapedString = Microsoft.JScript.GlobalObject.unescape(yourEscap ...

  3. 洛谷P1339 热浪

    P1339 热浪 529通过 1.3K提交 题目提供者yeszy 标签图论福建省历届夏令营 难度普及+/提高 提交该题 讨论 题解 记录 最新讨论 求助...为什么是未知错误… 求修正,貌似死循环 第 ...

  4. [bzoj 3224]手写treap

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3224 bzoj不能用time(0),看到这个博客才知道,我也RE了好几发…… #inclu ...

  5. Ubuntu1604 install netease-cloud music

    Two issue: 1. There is no voice on my computer, and the system was mute and cannot unmute. eric@E641 ...

  6. 数据结构之(HDU2051 Bitset)

    Problem Description Give you a number on base ten,you should output it on base two.(0 < n < 10 ...

  7. java生成API文档

    1.选择项目右键-Export\javadoc 2.选择生成工具在jdk安装目录下jdk\bin\javadoc.exe 3.在Eclipse里 export 选 JavaDoc,在向导的最后一页的E ...

  8. express添加拦截器

    var express = require('express')   , routes = require('./routes')   , http = require('http')   , pat ...

  9. 【数据结构】bzoj2957楼房重建

    Description 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些 ...

  10. [转]使用 LDAP OU 限制访问

    使用 LDAP OU 限制访问 http://www-01.ibm.com/support/knowledgecenter/api/content/SSEP7J_10.2.2/com.ibm.swg. ...