Little Peter Ivanov likes to play knights. Or musketeers. Or samurai. It depends on his mood. For parents, it is still always looks like “he again found a stick and peels the trees.” They cannot understand that it is a sword. Or epee. Or katana.
Today Peter has found a shield. Actually, it is a board from the fence; fortunately, the nails from it have already been pulled. Peter knows that the family coat of arms should be depicted on the knight’s shield. The coat of arms of Ivanovs is a rectangle inscribed in a triangle (only grandfather supports Peter’s game, and he is, after all, a professor of mathematics). Peter has already drawn the triangle, and then noticed that there is a hole from a nail inside the triangle. It is not very good, so Peter wants to draw a rectangle in such a way that the hole will be on its border.
Because of the rectangle in Peter’s family symbolizes the authority and power then Peter wants to draw a rectangle of maximum area.
And due to the fact, that Peter is a grandson of grandfather-mathematician, he is also interested in purely theoretical question — how many different rectangles, satisfying the conditions, can be drawn in the triangle.
Help Peter to find the answers to these questions.

Input

The four lines contain the coordinates of four points that are the vertices of the triangle and the hole, respectively. All coordinates are integers and do not exceed 10 4 in absolute value. It is guaranteed that the hole is strictly inside the triangle. Also it is guaranteed that the triangle vertices do not lie on one line.

Output

In the first line output the maximum area of a rectangle, which Peter can draw. The answer will be considered correct if a relative or absolute error of maximum area does not exceed 10 −6.
In the second line output the number of different rectangles that Peter can draw (these rectangles are not required to have the maximum area).

Example

input output
0 0
10 0
0 20
4 6
48.0000000000
4
-3 0
2 -1
5 7
0 1
9.0697674419
2

Notes

The rectangle is called inscribed in a triangle if all its vertices lie on the sides of the triangle.

把三角形按锐角、直角、钝角分类讨论,看点p是否在三条高上。锐角三角形的答案在3-6之间,直角在3-4之间,钝角在1-2之间。

需要求点在直线上的射影,然后再相似三角形啦,正切函数啥的啦搞一下面积就出来了。

#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define EPS 0.00000001
struct Point
{
double x,y;
Point(const double &X,const double &Y)
{
x=X;
y=Y;
}
Point(){}
double Length()
{
return sqrt(x*x+y*y);
}
}p,a[4];
typedef Point Vector;
double Dot(const Vector &a,const Vector &b)
{
return a.x*b.x+a.y*b.y;
}
Vector operator - (const Vector &a,const Vector &b)
{
return Vector(a.x-b.x,a.y-b.y);
}
Vector operator + (const Vector &a,const Vector &b)
{
return Vector(a.x+b.x,a.y+b.y);
}
double Cross(const Vector &a,const Vector &b)
{
return a.x*b.y-a.y*b.x;
}
double DisToLine(Point P,Point A,Point B)
{
Vector v1=B-A,v2=P-A;
return fabs(Cross(v1,v2))/v1.Length();
}
double tanget(Point a,Point b,Point c)//a是顶点
{
double COS=Dot(b-a,c-a)/(b-a).Length()/(c-a).Length();
double SIN=sqrt((1.0-COS*COS));
return SIN/COS;
}
Vector operator * (const double &x,const Vector &v)
{
return Vector(x*v.x,x*v.y);
}
Point GetLineProjection(Point P,Point A,Point B)
{
Vector v=B-A;
return A+(Dot(v,P-A)/Dot(v,v))*v;
}
double area;
int main()
{
//freopen("b.in","r",stdin);
for(int i=1;i<=3;++i)
scanf("%lf%lf",&a[i].x,&a[i].y);
scanf("%lf%lf",&p.x,&p.y);
int flag=0,ans=0;
//钝角三角形
if(Dot(a[2]-a[1],a[3]-a[1])<-EPS)
{
double dis=DisToLine(p,a[2],a[3]);
area=dis*((a[2]-a[3]).Length()-dis/tanget(a[2],a[1],a[3])-dis/tanget(a[3],a[1],a[2]));
if(fabs(Dot(a[1]-p,a[2]-a[3]))<EPS)
ans=1;
else
{
ans=2;
Point p1=GetLineProjection(a[1],a[2],a[3]);
Point p2=GetLineProjection(p,a[2],a[3]);
double h=(a[1]-p1).Length();
double h1;
if(Dot(p-p1,a[2]-p1)>EPS)
h1=(p2-a[2]).Length()/(p1-a[2]).Length()*h;
else
h1=(p2-a[3]).Length()/(p1-a[3]).Length()*h;
double l1=(h-h1)/h*(a[2]-a[3]).Length();
area=max(area,h1*l1);
}
printf("%.10lf\n%d\n",area,ans);
return 0;
}
else if(Dot(a[1]-a[2],a[3]-a[2])<-EPS)
{
double dis=DisToLine(p,a[1],a[3]);
area=dis*((a[1]-a[3]).Length()-dis/tanget(a[1],a[2],a[3])-dis/tanget(a[3],a[1],a[2]));
if(fabs(Dot(a[2]-p,a[1]-a[3]))<EPS)
ans=1;
else
{
ans=2;
Point p1=GetLineProjection(a[2],a[1],a[3]);
Point p2=GetLineProjection(p,a[1],a[3]);
double h=(a[2]-p1).Length();
double h1;
if(Dot(p-p1,a[1]-p1)>EPS)
h1=(p2-a[1]).Length()/(p1-a[1]).Length()*h;
else
h1=(p2-a[3]).Length()/(p1-a[3]).Length()*h;
double l1=(h-h1)/h*(a[1]-a[3]).Length();
area=max(area,h1*l1);
}
printf("%.10lf\n%d\n",area,ans);
return 0;
}
else if(Dot(a[1]-a[3],a[2]-a[3])<-EPS)
{
double dis=DisToLine(p,a[1],a[2]);
area=dis*((a[1]-a[2]).Length()-dis/tanget(a[1],a[2],a[3])-dis/tanget(a[2],a[1],a[3]));
if(fabs(Dot(a[3]-p,a[1]-a[2]))<EPS)
ans=1;
else
{
ans=2;
Point p1=GetLineProjection(a[3],a[1],a[2]);
Point p2=GetLineProjection(p,a[1],a[2]);
double h=(a[3]-p1).Length();
double h1;
if(Dot(p-p1,a[1]-p1)>EPS)
h1=(p2-a[1]).Length()/(p1-a[1]).Length()*h;
else
h1=(p2-a[2]).Length()/(p1-a[2]).Length()*h;
double l1=(h-h1)/h*(a[1]-a[2]).Length();
area=max(area,h1*l1);
}
printf("%.10lf\n%d\n",area,ans);
return 0;
}
//直角三角形
if(fabs(Dot(a[2]-a[1],a[3]-a[1]))<EPS)
{
double dis=DisToLine(p,a[2],a[3]);
area=dis*((a[2]-a[3]).Length()-dis/tanget(a[2],a[1],a[3])-dis/tanget(a[3],a[1],a[2]));
if(fabs(Dot(a[1]-p,a[2]-a[3]))<EPS)
ans=3;
else
{
ans=4;
Point p1=GetLineProjection(a[1],a[2],a[3]);
Point p2=GetLineProjection(p,a[2],a[3]);
double h=(a[1]-p1).Length();
double h1;
if(Dot(p-p1,a[2]-p1)>EPS)
h1=(p2-a[2]).Length()/(p1-a[2]).Length()*h;
else
h1=(p2-a[3]).Length()/(p1-a[3]).Length()*h;
double l1=(h-h1)/h*(a[2]-a[3]).Length();
area=max(area,h1*l1); Point p3=GetLineProjection(p,a[1],a[3]);
double h2=(p3-a[3]).Length()/(a[1]-a[3]).Length()*(a[1]-a[2]).Length();
Point p4=GetLineProjection(p,a[1],a[2]);
double l2=(a[1]-a[3]).Length()-h2/tanget(a[3],a[1],a[2]);
area=max(area,h2*l2); double h3=(p4-a[2]).Length()/(a[1]-a[2]).Length()*(a[1]-a[3]).Length();
double l3=(a[1]-a[2]).Length()-h3/tanget(a[2],a[1],a[3]);
area=max(area,h3*l3);
}
printf("%.10lf\n%d\n",area,ans);
return 0;
}
else if(fabs(Dot(a[1]-a[2],a[3]-a[2]))<EPS)
{
double dis=DisToLine(p,a[1],a[3]);
area=dis*((a[1]-a[3]).Length()-dis/tanget(a[1],a[2],a[3])-dis/tanget(a[3],a[1],a[2]));
if(fabs(Dot(a[2]-p,a[1]-a[3]))<EPS)
ans=3;
else
{
ans=4;
Point p1=GetLineProjection(a[2],a[1],a[3]);
Point p2=GetLineProjection(p,a[1],a[3]);
double h=(a[2]-p1).Length();
double h1;
if(Dot(p-p1,a[1]-p1)>EPS)
h1=(p2-a[1]).Length()/(p1-a[1]).Length()*h;
else
h1=(p2-a[3]).Length()/(p1-a[3]).Length()*h;
double l1=(h-h1)/h*(a[1]-a[3]).Length();
area=max(area,h1*l1); Point p3=GetLineProjection(p,a[2],a[3]);
double h2=(p3-a[3]).Length()/(a[2]-a[3]).Length()*(a[1]-a[2]).Length();
Point p4=GetLineProjection(p,a[1],a[2]);
double l2=(a[2]-a[3]).Length()-h2/tanget(a[3],a[1],a[2]);
area=max(area,h2*l2); double h3=(p4-a[1]).Length()/(a[1]-a[2]).Length()*(a[2]-a[3]).Length();
double l3=(a[1]-a[2]).Length()-h3/tanget(a[1],a[2],a[3]);
area=max(area,h3*l3);
}
printf("%.10lf\n%d\n",area,ans);
return 0;
}
else if(fabs(Dot(a[1]-a[3],a[2]-a[3]))<EPS)
{
double dis=DisToLine(p,a[1],a[2]);
area=dis*((a[1]-a[2]).Length()-dis/tanget(a[1],a[2],a[3])-dis/tanget(a[2],a[1],a[3]));
if(fabs(Dot(a[3]-p,a[1]-a[2]))<EPS)
ans=3;
else
{
ans=4;
Point p1=GetLineProjection(a[3],a[1],a[2]);
Point p2=GetLineProjection(p,a[1],a[2]);
double h=(a[3]-p1).Length();
double h1;
if(Dot(p-p1,a[1]-p1)>EPS)
h1=(p2-a[1]).Length()/(p1-a[1]).Length()*h;
else
h1=(p2-a[2]).Length()/(p1-a[2]).Length()*h;
double l1=(h-h1)/h*(a[1]-a[2]).Length();
area=max(area,h1*l1); Point p3=GetLineProjection(p,a[2],a[3]);
double h2=(p3-a[2]).Length()/(a[2]-a[3]).Length()*(a[1]-a[3]).Length();
Point p4=GetLineProjection(p,a[1],a[3]);
double l2=(a[2]-a[3]).Length()-h2/tanget(a[2],a[1],a[3]);
area=max(area,h2*l2); double h3=(p4-a[1]).Length()/(a[1]-a[3]).Length()*(a[2]-a[3]).Length();
double l3=(a[1]-a[3]).Length()-h3/tanget(a[1],a[2],a[3]);
area=max(area,h3*l3);
}
printf("%.10lf\n%d\n",area,ans);
return 0;
}
//锐角三角形
for(int i=1;i<=3;++i)//枚举上顶点
{
int j,k;
if(i==1) j=2,k=3;
else if(i==2) j=3,k=1;
else j=1,k=2;
double dis=DisToLine(p,a[j],a[k]);
area=max(area,dis*((a[j]-a[k]).Length()-dis/tanget(a[j],a[i],a[k])-dis/tanget(a[k],a[i],a[j])));
if(fabs(Dot(a[i]-p,a[k]-a[j]))<EPS)
++ans;
else
{
ans+=2;
Point p1=GetLineProjection(a[i],a[j],a[k]);
Point p2=GetLineProjection(p,a[j],a[k]);
double h=(a[i]-p1).Length();
double h1;
if(Dot(p-p1,a[j]-p1)>EPS)
h1=(p2-a[j]).Length()/(p1-a[j]).Length()*h;
else
h1=(p2-a[k]).Length()/(p1-a[k]).Length()*h;
double l1=(h-h1)/h*(a[j]-a[k]).Length();
area=max(area,h1*l1);
}
}
printf("%.10lf\n%d\n",area,ans);
return 0;
}

【计算几何】URAL - 2101 - Knight's Shield的更多相关文章

  1. Ural 1298 Knight 题解

    目录 Ural 1298 Knight 题解 题意 题解 程序 Ural 1298 Knight 题解 题意 给定一个\(n\times n(1\le n\le8)\)的国际象棋棋盘和一个骑士(基本上 ...

  2. 转载:hdu 题目分类 (侵删)

    转载:from http://blog.csdn.net/qq_28236309/article/details/47818349 基础题:1000.1001.1004.1005.1008.1012. ...

  3. 杭电ACM分类

    杭电ACM分类: 1001 整数求和 水题1002 C语言实验题——两个数比较 水题1003 1.2.3.4.5... 简单题1004 渊子赛马 排序+贪心的方法归并1005 Hero In Maze ...

  4. Ural 1197 - Lonesome Knight

    The statement of this problem is very simple: you are to determine how many squares of the chessboar ...

  5. Ural 2036. Intersect Until You're Sick of It 计算几何

    2036. Intersect Until You're Sick of It 题目连接: http://acm.timus.ru/problem.aspx?space=1&num=2036 ...

  6. URAL 1775 B - Space Bowling 计算几何

    B - Space BowlingTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/contest/ ...

  7. Ural 1046 Geometrical Dreams(解方程+计算几何)

    题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1046 参考博客:http://hi.baidu.com/cloudygoose/item ...

  8. URAL 2099 Space Invader题解 (计算几何)

    啥也不说了,直接看图吧…… 代码如下: #include<stdio.h> #include<iostream> #include<math.h> using na ...

  9. URAL 1966 Cycling Roads 计算几何

    Cycling Roads 题目连接: http://acm.hust.edu.cn/vjudge/contest/123332#problem/F Description When Vova was ...

随机推荐

  1. 用原生JavaScript做个简单的回到顶部

    很多网页在下方都会放置一个“返回顶部”按钮,尤其是页面底部没有导航的网页,这样可以帮助访客重新找到导航或者重温一遍广告(想得真美).随着近几年来 JavaScript 的应用日渐广泛,滑动效果无处不在 ...

  2. at用法小记

    By francis_hao    Aug 22,2017   at – 设置稍后执行的作业. 概要 at [-V] [-f file] [-mMlv] timespec...at [-V] [-f ...

  3. 从零开始学习MXnet(三)之Model和Module

    在我们在MXnet中定义好symbol.写好dataiter并且准备好data之后,就可以开开心的去训练了.一般训练一个网络有两种常用的策略,基于model的和基于module的.今天,我想谈一谈他们 ...

  4. 获得edittext的图片大小

    1.在布局文件中编写控件,有2张图片 <EditText android:id="@+id/edit" android:background="@drawable/ ...

  5. Spring Boot(一)

    1.注解  @EnableAutoConfiguration 官方文档:The @EnableAutoConfiguration annotation is often placed on your ...

  6. PowerShell官方文档

    PowerShell PowerShell 在 .NET Framework 基础之上构建,是一种基于任务的命令行 Shell 脚本语言:专门面向系统管理员和高级用户,可快速自动化多个操作系统(Lin ...

  7. input 单选按钮radio 取消选中(转载)

    input单选按钮: 在radio按钮中添加属性tag  0代表未被选中 HTML代码: <input name="rdo1" value="AA" ty ...

  8. [Leetcode Week8]Triangle

    Triangle 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/triangle/description/ Description Given a t ...

  9. Linux上使用程序相对路径访问文件【转】

    转自:http://blog.csdn.net/yinxusen/article/details/7444249 今天一个朋友问我这个问题,说为什么在Windows上跑得很好的应用程序,移植到Linu ...

  10. bootstrap,ECMA

    前端UI(布局)框架 bootstrap Amaze UI BootStrap 全局css样式 栅格系统 container 容器 超小屏幕 手机 vw <768px 宽度 100% 小屏幕 平 ...