Little Peter Ivanov likes to play knights. Or musketeers. Or samurai. It depends on his mood. For parents, it is still always looks like “he again found a stick and peels the trees.” They cannot understand that it is a sword. Or epee. Or katana.
Today Peter has found a shield. Actually, it is a board from the fence; fortunately, the nails from it have already been pulled. Peter knows that the family coat of arms should be depicted on the knight’s shield. The coat of arms of Ivanovs is a rectangle inscribed in a triangle (only grandfather supports Peter’s game, and he is, after all, a professor of mathematics). Peter has already drawn the triangle, and then noticed that there is a hole from a nail inside the triangle. It is not very good, so Peter wants to draw a rectangle in such a way that the hole will be on its border.
Because of the rectangle in Peter’s family symbolizes the authority and power then Peter wants to draw a rectangle of maximum area.
And due to the fact, that Peter is a grandson of grandfather-mathematician, he is also interested in purely theoretical question — how many different rectangles, satisfying the conditions, can be drawn in the triangle.
Help Peter to find the answers to these questions.

Input

The four lines contain the coordinates of four points that are the vertices of the triangle and the hole, respectively. All coordinates are integers and do not exceed 10 4 in absolute value. It is guaranteed that the hole is strictly inside the triangle. Also it is guaranteed that the triangle vertices do not lie on one line.

Output

In the first line output the maximum area of a rectangle, which Peter can draw. The answer will be considered correct if a relative or absolute error of maximum area does not exceed 10 −6.
In the second line output the number of different rectangles that Peter can draw (these rectangles are not required to have the maximum area).

Example

input output
0 0
10 0
0 20
4 6
48.0000000000
4
-3 0
2 -1
5 7
0 1
9.0697674419
2

Notes

The rectangle is called inscribed in a triangle if all its vertices lie on the sides of the triangle.

把三角形按锐角、直角、钝角分类讨论,看点p是否在三条高上。锐角三角形的答案在3-6之间,直角在3-4之间,钝角在1-2之间。

需要求点在直线上的射影,然后再相似三角形啦,正切函数啥的啦搞一下面积就出来了。

#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define EPS 0.00000001
struct Point
{
double x,y;
Point(const double &X,const double &Y)
{
x=X;
y=Y;
}
Point(){}
double Length()
{
return sqrt(x*x+y*y);
}
}p,a[4];
typedef Point Vector;
double Dot(const Vector &a,const Vector &b)
{
return a.x*b.x+a.y*b.y;
}
Vector operator - (const Vector &a,const Vector &b)
{
return Vector(a.x-b.x,a.y-b.y);
}
Vector operator + (const Vector &a,const Vector &b)
{
return Vector(a.x+b.x,a.y+b.y);
}
double Cross(const Vector &a,const Vector &b)
{
return a.x*b.y-a.y*b.x;
}
double DisToLine(Point P,Point A,Point B)
{
Vector v1=B-A,v2=P-A;
return fabs(Cross(v1,v2))/v1.Length();
}
double tanget(Point a,Point b,Point c)//a是顶点
{
double COS=Dot(b-a,c-a)/(b-a).Length()/(c-a).Length();
double SIN=sqrt((1.0-COS*COS));
return SIN/COS;
}
Vector operator * (const double &x,const Vector &v)
{
return Vector(x*v.x,x*v.y);
}
Point GetLineProjection(Point P,Point A,Point B)
{
Vector v=B-A;
return A+(Dot(v,P-A)/Dot(v,v))*v;
}
double area;
int main()
{
//freopen("b.in","r",stdin);
for(int i=1;i<=3;++i)
scanf("%lf%lf",&a[i].x,&a[i].y);
scanf("%lf%lf",&p.x,&p.y);
int flag=0,ans=0;
//钝角三角形
if(Dot(a[2]-a[1],a[3]-a[1])<-EPS)
{
double dis=DisToLine(p,a[2],a[3]);
area=dis*((a[2]-a[3]).Length()-dis/tanget(a[2],a[1],a[3])-dis/tanget(a[3],a[1],a[2]));
if(fabs(Dot(a[1]-p,a[2]-a[3]))<EPS)
ans=1;
else
{
ans=2;
Point p1=GetLineProjection(a[1],a[2],a[3]);
Point p2=GetLineProjection(p,a[2],a[3]);
double h=(a[1]-p1).Length();
double h1;
if(Dot(p-p1,a[2]-p1)>EPS)
h1=(p2-a[2]).Length()/(p1-a[2]).Length()*h;
else
h1=(p2-a[3]).Length()/(p1-a[3]).Length()*h;
double l1=(h-h1)/h*(a[2]-a[3]).Length();
area=max(area,h1*l1);
}
printf("%.10lf\n%d\n",area,ans);
return 0;
}
else if(Dot(a[1]-a[2],a[3]-a[2])<-EPS)
{
double dis=DisToLine(p,a[1],a[3]);
area=dis*((a[1]-a[3]).Length()-dis/tanget(a[1],a[2],a[3])-dis/tanget(a[3],a[1],a[2]));
if(fabs(Dot(a[2]-p,a[1]-a[3]))<EPS)
ans=1;
else
{
ans=2;
Point p1=GetLineProjection(a[2],a[1],a[3]);
Point p2=GetLineProjection(p,a[1],a[3]);
double h=(a[2]-p1).Length();
double h1;
if(Dot(p-p1,a[1]-p1)>EPS)
h1=(p2-a[1]).Length()/(p1-a[1]).Length()*h;
else
h1=(p2-a[3]).Length()/(p1-a[3]).Length()*h;
double l1=(h-h1)/h*(a[1]-a[3]).Length();
area=max(area,h1*l1);
}
printf("%.10lf\n%d\n",area,ans);
return 0;
}
else if(Dot(a[1]-a[3],a[2]-a[3])<-EPS)
{
double dis=DisToLine(p,a[1],a[2]);
area=dis*((a[1]-a[2]).Length()-dis/tanget(a[1],a[2],a[3])-dis/tanget(a[2],a[1],a[3]));
if(fabs(Dot(a[3]-p,a[1]-a[2]))<EPS)
ans=1;
else
{
ans=2;
Point p1=GetLineProjection(a[3],a[1],a[2]);
Point p2=GetLineProjection(p,a[1],a[2]);
double h=(a[3]-p1).Length();
double h1;
if(Dot(p-p1,a[1]-p1)>EPS)
h1=(p2-a[1]).Length()/(p1-a[1]).Length()*h;
else
h1=(p2-a[2]).Length()/(p1-a[2]).Length()*h;
double l1=(h-h1)/h*(a[1]-a[2]).Length();
area=max(area,h1*l1);
}
printf("%.10lf\n%d\n",area,ans);
return 0;
}
//直角三角形
if(fabs(Dot(a[2]-a[1],a[3]-a[1]))<EPS)
{
double dis=DisToLine(p,a[2],a[3]);
area=dis*((a[2]-a[3]).Length()-dis/tanget(a[2],a[1],a[3])-dis/tanget(a[3],a[1],a[2]));
if(fabs(Dot(a[1]-p,a[2]-a[3]))<EPS)
ans=3;
else
{
ans=4;
Point p1=GetLineProjection(a[1],a[2],a[3]);
Point p2=GetLineProjection(p,a[2],a[3]);
double h=(a[1]-p1).Length();
double h1;
if(Dot(p-p1,a[2]-p1)>EPS)
h1=(p2-a[2]).Length()/(p1-a[2]).Length()*h;
else
h1=(p2-a[3]).Length()/(p1-a[3]).Length()*h;
double l1=(h-h1)/h*(a[2]-a[3]).Length();
area=max(area,h1*l1); Point p3=GetLineProjection(p,a[1],a[3]);
double h2=(p3-a[3]).Length()/(a[1]-a[3]).Length()*(a[1]-a[2]).Length();
Point p4=GetLineProjection(p,a[1],a[2]);
double l2=(a[1]-a[3]).Length()-h2/tanget(a[3],a[1],a[2]);
area=max(area,h2*l2); double h3=(p4-a[2]).Length()/(a[1]-a[2]).Length()*(a[1]-a[3]).Length();
double l3=(a[1]-a[2]).Length()-h3/tanget(a[2],a[1],a[3]);
area=max(area,h3*l3);
}
printf("%.10lf\n%d\n",area,ans);
return 0;
}
else if(fabs(Dot(a[1]-a[2],a[3]-a[2]))<EPS)
{
double dis=DisToLine(p,a[1],a[3]);
area=dis*((a[1]-a[3]).Length()-dis/tanget(a[1],a[2],a[3])-dis/tanget(a[3],a[1],a[2]));
if(fabs(Dot(a[2]-p,a[1]-a[3]))<EPS)
ans=3;
else
{
ans=4;
Point p1=GetLineProjection(a[2],a[1],a[3]);
Point p2=GetLineProjection(p,a[1],a[3]);
double h=(a[2]-p1).Length();
double h1;
if(Dot(p-p1,a[1]-p1)>EPS)
h1=(p2-a[1]).Length()/(p1-a[1]).Length()*h;
else
h1=(p2-a[3]).Length()/(p1-a[3]).Length()*h;
double l1=(h-h1)/h*(a[1]-a[3]).Length();
area=max(area,h1*l1); Point p3=GetLineProjection(p,a[2],a[3]);
double h2=(p3-a[3]).Length()/(a[2]-a[3]).Length()*(a[1]-a[2]).Length();
Point p4=GetLineProjection(p,a[1],a[2]);
double l2=(a[2]-a[3]).Length()-h2/tanget(a[3],a[1],a[2]);
area=max(area,h2*l2); double h3=(p4-a[1]).Length()/(a[1]-a[2]).Length()*(a[2]-a[3]).Length();
double l3=(a[1]-a[2]).Length()-h3/tanget(a[1],a[2],a[3]);
area=max(area,h3*l3);
}
printf("%.10lf\n%d\n",area,ans);
return 0;
}
else if(fabs(Dot(a[1]-a[3],a[2]-a[3]))<EPS)
{
double dis=DisToLine(p,a[1],a[2]);
area=dis*((a[1]-a[2]).Length()-dis/tanget(a[1],a[2],a[3])-dis/tanget(a[2],a[1],a[3]));
if(fabs(Dot(a[3]-p,a[1]-a[2]))<EPS)
ans=3;
else
{
ans=4;
Point p1=GetLineProjection(a[3],a[1],a[2]);
Point p2=GetLineProjection(p,a[1],a[2]);
double h=(a[3]-p1).Length();
double h1;
if(Dot(p-p1,a[1]-p1)>EPS)
h1=(p2-a[1]).Length()/(p1-a[1]).Length()*h;
else
h1=(p2-a[2]).Length()/(p1-a[2]).Length()*h;
double l1=(h-h1)/h*(a[1]-a[2]).Length();
area=max(area,h1*l1); Point p3=GetLineProjection(p,a[2],a[3]);
double h2=(p3-a[2]).Length()/(a[2]-a[3]).Length()*(a[1]-a[3]).Length();
Point p4=GetLineProjection(p,a[1],a[3]);
double l2=(a[2]-a[3]).Length()-h2/tanget(a[2],a[1],a[3]);
area=max(area,h2*l2); double h3=(p4-a[1]).Length()/(a[1]-a[3]).Length()*(a[2]-a[3]).Length();
double l3=(a[1]-a[3]).Length()-h3/tanget(a[1],a[2],a[3]);
area=max(area,h3*l3);
}
printf("%.10lf\n%d\n",area,ans);
return 0;
}
//锐角三角形
for(int i=1;i<=3;++i)//枚举上顶点
{
int j,k;
if(i==1) j=2,k=3;
else if(i==2) j=3,k=1;
else j=1,k=2;
double dis=DisToLine(p,a[j],a[k]);
area=max(area,dis*((a[j]-a[k]).Length()-dis/tanget(a[j],a[i],a[k])-dis/tanget(a[k],a[i],a[j])));
if(fabs(Dot(a[i]-p,a[k]-a[j]))<EPS)
++ans;
else
{
ans+=2;
Point p1=GetLineProjection(a[i],a[j],a[k]);
Point p2=GetLineProjection(p,a[j],a[k]);
double h=(a[i]-p1).Length();
double h1;
if(Dot(p-p1,a[j]-p1)>EPS)
h1=(p2-a[j]).Length()/(p1-a[j]).Length()*h;
else
h1=(p2-a[k]).Length()/(p1-a[k]).Length()*h;
double l1=(h-h1)/h*(a[j]-a[k]).Length();
area=max(area,h1*l1);
}
}
printf("%.10lf\n%d\n",area,ans);
return 0;
}

【计算几何】URAL - 2101 - Knight's Shield的更多相关文章

  1. Ural 1298 Knight 题解

    目录 Ural 1298 Knight 题解 题意 题解 程序 Ural 1298 Knight 题解 题意 给定一个\(n\times n(1\le n\le8)\)的国际象棋棋盘和一个骑士(基本上 ...

  2. 转载:hdu 题目分类 (侵删)

    转载:from http://blog.csdn.net/qq_28236309/article/details/47818349 基础题:1000.1001.1004.1005.1008.1012. ...

  3. 杭电ACM分类

    杭电ACM分类: 1001 整数求和 水题1002 C语言实验题——两个数比较 水题1003 1.2.3.4.5... 简单题1004 渊子赛马 排序+贪心的方法归并1005 Hero In Maze ...

  4. Ural 1197 - Lonesome Knight

    The statement of this problem is very simple: you are to determine how many squares of the chessboar ...

  5. Ural 2036. Intersect Until You're Sick of It 计算几何

    2036. Intersect Until You're Sick of It 题目连接: http://acm.timus.ru/problem.aspx?space=1&num=2036 ...

  6. URAL 1775 B - Space Bowling 计算几何

    B - Space BowlingTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/contest/ ...

  7. Ural 1046 Geometrical Dreams(解方程+计算几何)

    题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1046 参考博客:http://hi.baidu.com/cloudygoose/item ...

  8. URAL 2099 Space Invader题解 (计算几何)

    啥也不说了,直接看图吧…… 代码如下: #include<stdio.h> #include<iostream> #include<math.h> using na ...

  9. URAL 1966 Cycling Roads 计算几何

    Cycling Roads 题目连接: http://acm.hust.edu.cn/vjudge/contest/123332#problem/F Description When Vova was ...

随机推荐

  1. Flex UI刷新后保持DataGrid中的ScrollBar的位置不变

    这是之前我发的一个贴子问题描述:http://q.cnblogs.com/q/53469/

  2. 如何让 linux unzip 命令 不输出结果

    unzip xx.zip > /dev/null 2>&1 unzip xx.zip > /dev/null前半部分是将标准输出重定向到空设备, 后面的2>&1 ...

  3. bzoj4430 [Nwerc2015]Guessing Camels赌骆驼

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4430 [题解] 把每只骆驼在第一个人.第二个人.第三个人的位置找出来,然后做三维偏序即可. ...

  4. loadView不需要调用super view,原因:loadView方法的作用就是自定义view.[super loadView]会耗性能.

        https://www.evernote.com/shard/s227/sh/423fd81d-ab1c-4e6c-997d-39359472a4a5/f220ade8bd9be149ad70 ...

  5. Linux提权思路

    先写个大概 0. dirtycow 不同的dirtycow有不同执行条件. 使用前先对照此表根据内核版本确认是否已经修复 https://github.com/dirtycow/dirtycow.gi ...

  6. Linux设备模型(3)_Uevent【转】

    转自:http://www.wowotech.net/device_model/uevent.html 1. Uevent的功能 Uevent是Kobject的一部分,用于在Kobject状态发生改变 ...

  7. 程序异常退出 却没有产生core文件

    程序异常退出  却没有产生core文件 http://www.cnblogs.com/my_life/articles/4107333.html

  8. windows下nginx安装及使用

    nginx简介: nginx是一款轻量级web服务器,也是一款反向代理服务器(比如域名转发等). nginx功能: 1.可直接支持Rails和PHP的程序. 2.可作为HTTP反向代理服务器. 3.作 ...

  9. button的格式的问题

    1. <input type="button"  class="buttoncls"  onclick=""  value=" ...

  10. Cause: org.apache.ibatis.executor.ExecutorException: Error getting generated key or setting result to parameter object. Cause: java.sql.SQLException: 不支持的特性

    mybatis插入数据时报错: Cause: org.apache.ibatis.executor.ExecutorException: Error getting generated key or ...