3944: Sum

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 6201  Solved: 1606
[Submit][Status][Discuss]

Description

 

Input

一共T+1行
第1行为数据组数T(T<=10)
第2~T+1行每行一个非负整数N,代表一组询问
 

Output

一共T行,每行两个用空格分隔的数ans1,ans2
 

Sample Input

6
1
2
8
13
30
2333

Sample Output

1 1
2 0
22 -2
58 -3
278 -3
1655470 2

HINT

 

Source

 

[Submit][Status][Discuss]

最基础的杜教筛。

杜教筛实际上就是这样一个式子:$$F(n)=H(n)-\sum\limits_{i=2}^{n}g(i)F(\lfloor\frac{n}{i}\rfloor)$$

设要求的是$f$的前缀和,辅助函数分别是$g$和$h$,$F$,$G$,$H$分别是三个函数的前缀和,如果能在$O(1)$的时间内求出$G$和$H$,就能在$O(n^{\frac{3}{4}})$内求出$F$。复杂度$O(\sum\limits_{i=1}^{\sqrt{n}} \sqrt{\frac{n}{i}})=O(n^\frac{4}{3})$,通过预处理前$n^{\frac{2}{3}}$个数就可以做到$O(n^{\frac{2}{3}})$了。

对于后面的$F(n)$值数组下标不可能直接记录,但是注意到我们最终需要的$F$函数值最多有$O(n^{\frac{2}{3}})$个(因为$\lfloor \frac{\lfloor\frac{a}{b}\rfloor}{c} \rfloor=\lfloor \frac{a}{bc} \rfloor$),所以对于后面的值可以把$x$存到$n/x$里。

回到这题,不要爆int就好了。

 #include<cstdio>
#include<cstring>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
typedef long long ll;
using namespace std; const int N=,M=;
int T,n,m,tot,p[N];
ll phi[N],mu[N],Phi[M],Mu[M];
bool vis[M]; ll getphi(int x){ if (x<=m) return phi[x]; else return Phi[n/x]; }
ll getmu(int x){ if (x<=m) return mu[x]; else return Mu[n/x]; } void solve(int x){
if (x<=m) return;
int t=n/x,lst=; ll p1=,p2=;
if (vis[t]) return;
vis[t]=; Phi[t]=(1ll*x+)*x>>; Mu[t]=;
while (lst<x){
int i=lst+; lst=x/(x/i); solve(x/i);
p1+=getphi(x/i)*(lst-i+); p2+=getmu(x/i)*(lst-i+);
}
Phi[t]-=p1; Mu[t]-=p2;
} int main(){
freopen("bzoj3944.in","r",stdin);
freopen("bzoj3944.out","w",stdout);
scanf("%d",&T); m=; phi[]=mu[]=;
rep(i,,m){
if (!phi[i]) p[++tot]=i,phi[i]=i-,mu[i]=-;
for (int j=; j<=tot && i*p[j]<=m; j++)
if (i%p[j]==) { phi[i*p[j]]=p[j]*phi[i]; mu[i*p[j]]=; break; }
else phi[i*p[j]]=(p[j]-)*phi[i],mu[i*p[j]]=-mu[i];
}
rep(i,,m) phi[i]=phi[i-]+phi[i],mu[i]=mu[i-]+mu[i];
while (T--){
scanf("%d",&n); memset(vis,,sizeof(vis));
if (n<=m) printf("%lld %lld\n",phi[n],mu[n]);
else solve(n),printf("%lld %lld\n",Phi[],Mu[]);
}
return ;
}

[BZOJ3944]Sum(杜教筛)的更多相关文章

  1. [bzoj3944] sum [杜教筛模板]

    题面: 传送门 就是让你求$ \varphi\left(i\right) $以及$ \mu\left(i\right) $的前缀和 思路: 就是杜教筛的模板 我们把套路公式拿出来: $ g\left( ...

  2. bzoj3944: Sum 杜教筛板子题

    板子题(卡常) 也可能是用map太慢了 /************************************************************** Problem: 3944 Us ...

  3. 3944: Sum[杜教筛]

    3944: Sum Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3471  Solved: 946[Submit][Status][Discuss] ...

  4. 【Bzoj3944】杜教筛模板(狄利克雷卷积搞杜教筛)

    题目链接 哇杜教筛超炫的 有没有见过$O(n^\frac{2}{3})$求欧拉函数前缀和的算法?没有吧?蛤蛤蛤 首先我们来看狄利克雷卷积是什么 首先我们把定义域是整数,陪域是复数的函数叫做数论函数. ...

  5. 洛谷P4213 Sum(杜教筛)

    题目描述 给定一个正整数N(N\le2^{31}-1)N(N≤231−1) 求ans_1=\sum_{i=1}^n\phi(i),ans_2=\sum_{i=1}^n \mu(i)ans1​=∑i=1 ...

  6. bzoj 3944 Sum —— 杜教筛

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3944 杜教筛入门题! 看博客:https://www.cnblogs.com/zjp-sha ...

  7. BZOJ 3944: Sum [杜教筛]

    3944: Sum 贴模板 总结见学习笔记(现在还没写23333) #include <iostream> #include <cstdio> #include <cst ...

  8. 【BZOJ3944】Sum(杜教筛)

    [BZOJ3944]Sum(杜教筛) 题面 求\[\sum_{i=1}^n\mu(i)和\sum_{i=1}^n\phi(i)\] 范围:\(n<2^{31}\) 令\[S(n)=\sum_{i ...

  9. BZOJ3944: Sum(杜教筛模板)

    BZOJ3944: Sum(杜教筛模板) 题面描述 传送门 题目分析 求\(\sum_{i=1}^{n}\mu(i)\)和\(\sum_{i=1}^{n}\varphi(i)\) 数据范围线性不可做. ...

随机推荐

  1. 【NOIP2017 D1 T1 小凯的疑惑】

    题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的 ...

  2. jocky1.0.3 (原joc) java混淆器 去除jdk版本限制

    昨晚下班回去,研究了下jocky1.0.3的使用,发现编译时提示引用类库版本不对,捣弄了半个小时后终于理解,原来是我的jdk1.7版本过高,这货是06年的版本,到现在都没更新过,支持(限制)的最高版本 ...

  3. 使用setTimeout延时10ms执行onunloadcancel

    在做Web开发时,我们经常用到页面关闭事件onbeforeunload,可以给用户一个选择放弃关闭的机会,就比如这个博客编辑器.如果用户选择了离开,那么onunload事件自然会触发:但若用户选择了取 ...

  4. HNOI2002 彩票 [搜索]

    题目描述 某地发行一套彩票.彩票上写有1到M这M个自然数.彩民可以在这M个数中任意选取N个不同的数打圈.每个彩民只能买一张彩票,不同的彩民的彩票上的选择不同. 每次抽奖将抽出两个自然数X和Y.如果某人 ...

  5. 使用google api material icons在网页中插入图标

    在<head></head>中加入这一句: <link rel='stylesheet' href='http://fonts.googleapis.com/icon?f ...

  6. POJ2912:Rochambeau(带权并查集)

    Rochambeau Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5208   Accepted: 1778 题目链接:h ...

  7. event对象和事件冒泡

    <!DOCTYPE HTML><html><head> <meta charset="utf-8"> <title>无标 ...

  8. C++ Review

    #include "iostream" #include "iomanip" #include "cstdio" using namespa ...

  9. BZOJ 4823: [Cqoi2017]老C的方块

    分析: 我觉得我的网络流白学了...QAQ... 其实数据范围本是无法用网络流跑过去的,然而出题者想让他跑过去,也就跑过去了... 看到题目其实感觉很麻烦,不知道从哪里入手,那么仔细观察所给出的有用信 ...

  10. centos6.4 nginx+mysql+php整合phpmyadmin出错解决方案

    今天在centos下整合phpmyadmin出错,错误提示如下: Error during session start; please check your PHP and/or webserver ...