Permutation Counting

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1487    Accepted Submission(s): 754

Problem Description
Given a permutation a1, a2, … aN of {1, 2, …, N}, we define its E-value as the amount of elements where ai > i. For example, the E-value of permutation {1, 3, 2, 4} is 1, while the E-value of {4, 3, 2, 1} is 2. You are requested to find how many permutations of {1, 2, …, N} whose E-value is exactly k.
 
Input
There are several test cases, and one line for each case, which contains two integers, N and k. (1 <= N <= 1000, 0 <= k <= N). 
 
Output
Output one line for each case. For the answer may be quite huge, you need to output the answer module 1,000,000,007.
 
Sample Input
3 0
3 1
 
Sample Output
1
4

Hint

There is only one permutation with E-value 0: {1,2,3}, and there are four permutations with E-value 1: {1,3,2}, {2,1,3}, {3,1,2}, {3,2,1}

 
Source
 
题意:对于任一种N的排列A,定义它的E值为序列中满足A[i]>i的数的个数。给定N和K(K<=N<=1000),问N的排列中E值为K的个数。
dp[i][j]表示前i个数的排列中E值为j的个数,所以当插入第i+1个数时,如果放在第i+1或满足条件的j个位置时,j不变,与其余i-j个位置上的数调换时j会+1。所以
dp[i+1][j] = dp[i+1][j] + (j + 1) * dp[i][j];
dp[i+1][j+1] = dp[i+1][j+1] + (i - j) * dp[i][j];
 
/*
ID: LinKArftc
PROG: 3664.cpp
LANG: C++
*/ #include <map>
#include <set>
#include <cmath>
#include <stack>
#include <queue>
#include <vector>
#include <cstdio>
#include <string>
#include <utility>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define eps 1e-8
#define randin srand((unsigned int)time(NULL))
#define input freopen("input.txt","r",stdin)
#define debug(s) cout << "s = " << s << endl;
#define outstars cout << "*************" << endl;
const double PI = acos(-1.0);
const double e = exp(1.0);
const int inf = 0x3f3f3f3f;
const int INF = 0x7fffffff;
typedef long long ll; const int maxn = ;
const int MOD = ; ll dp[maxn][maxn];
int n, k; void init() {
dp[][] = ;
dp[][] = ;
for (int i = ; i <= ; i ++) {
for (int j = ; j <= ; j ++) {
dp[i+][j] = (dp[i+][j] % MOD + (j + ) * dp[i][j] % MOD) % MOD;
dp[i+][j+] = (dp[i+][j+] % MOD + (i - j) * dp[i][j] % MOD) % MOD;
}
}
} int main() { init();
while (~scanf("%d %d", &n, &k)) {
printf("%d\n", dp[n][k]);
} return ;
}
 

HDU3664 Permutation Counting的更多相关文章

  1. hdu3664 Permutation Counting(dp)

    hdu3664 Permutation Counting 题目传送门 题意: 在一个序列中,如果有k个数满足a[i]>i:那么这个序列的E值为k,问你 在n的全排列中,有多少个排列是恰好是E值为 ...

  2. hdu 3664 Permutation Counting(水DP)

    Permutation Counting Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  3. HDU - 3664 Permutation Counting 排列规律dp

    Permutation Counting Given a permutation a1, a2, … aN of {1, 2, …, N}, we define its E-value as the ...

  4. HDU - 3664 Permutation Counting

    Discription Given a permutation a1, a2, … aN of {1, 2, …, N}, we define its E-value as the amount of ...

  5. HDU 3664 Permutation Counting (DP)

    题意:给一个 n,求在 n 的所有排列中,恰好有 k 个数a[i] > i 的个数. 析:很明显是DP,搞了好久才搞出来,觉得自己DP,实在是太low了,思路是这样的. dp[i][j]表示 i ...

  6. HDU 6880 Permutation Counting dp

    题意: 给你一个n和一个长度为n-1的由0/1构成的b序列 你需要从[1,n]中构造出来一个满足b序列的序列 我们设使用[1,n]构成的序列为a,那么如果ai>ai+1,那么bi=1,否则bi= ...

  7. UVALive 5971

    Problem J Permutation Counting Dexter considers a permutation of first N natural numbers good if it ...

  8. LeetCode_Next Permutation

    Implement next permutation, which rearranges numbers into the lexicographically next greater permuta ...

  9. CH3602 Counting Swaps

    题意 3602 Counting Swaps 0x30「数学知识」例题 背景 https://ipsc.ksp.sk/2016/real/problems/c.html Just like yeste ...

随机推荐

  1. Ubuntu下使用Git_3

    这里是我举得小白阶段比较困难的地方了, 当在我们向远程数据库推送数据之前,有其他用户向远程数据库推送的相同的文件的时候,服务器会拒绝我们的推送,这个时候就需要我们来整合这两个文件 如图说是,现在显示的 ...

  2. Python 3基础教程29-os模块

    本文介绍os模块,主要是介绍一些文件的相关操作. 你还有其他方法去查看os 1. help() 然后输入os 2. Python接口文档,前面提到的用浏览器打开的,os文件路径为:C:\Users\A ...

  3. 【Selenium-Python】Selenium-Firefox 环境配置 win64

    Python 已安装完毕 Selenium 安装: Windows > cmd pip install selenium 注:未加selenium版本号时默认安装最新版本. 查询当前Seleni ...

  4. popen和system问题

    popen和system问题 1. 问题描述 C的代码里面去调用命令启动一个shell脚本,分别使用了下面两个途径. 其中一个是: func1(cmd) { popen(cmd,type); pclo ...

  5. const 常量与 define常量的区别

    c++中的常量可以使用const定义,也可以使用#define宏定义的方式:二者区别如下: - **区别** 1. const定义的常量有自己的数据类型,编译器可以对其进行严格的类型检查:但是defi ...

  6. Spark实战练习01--XML数据处理

    一.要求 将XML中的account_number.model数据提取出来,并以account_number:model格式存储 1.XML文件数据格式 <activations> < ...

  7. HDU 4571 Travel in time(最短路径+DP)(2013 ACM-ICPC长沙赛区全国邀请赛)

    Problem Description Bob gets tired of playing games, leaves Alice, and travels to Changsha alone. Yu ...

  8. DP入门(2)——DAG上的动态规划

    有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础.很多问题都可以转化为DAG上的最长路.最短路或路径计数问题. 一.DAG模型 [嵌套矩形问题] 问题 ...

  9. HDU 1398 Square Coins 整数拆分变形 母函数

    欢迎参加——BestCoder周年纪念赛(高质量题目+多重奖励) Square Coins Time Limit: 2000/1000 MS (Java/Others)    Memory Limit ...

  10. codeforce580c (dfs)

    题目意思:给你一棵树,然后每个叶子节点会有一家餐馆,你讨厌猫,就不会走有连续超过m个节点有猫的路,然后问你最多去几家饭店 思路:直接DFS Example Input 4 11 1 0 01 21 3 ...