看到这道题想什么? 一个好转移的状态由于T最多444所以把每个点控制在O(400000)以内,所以对于n和r最多乘一次因此猜f[n][r],f[r][n],首先一轮一轮的搞不好转移,那么先想一想f[n][r],如果是从头开始,在转移到下一位的时候,前面的会对后面的有恶心的影响,那么倒着来f[i][j]=(1.0-p[i])j*f[i+1][j]+[1.0-(1.0-p[i])j*(f[i+1][j-1]+d[i]),

现在让我们分析一下呢我们用到了小数点后上百位而没有被卡精的秘诀(巧合),让我们分析状态的递进首先在最后一位,因为double 16 所以点前3点后13,那么由于乘法是和小数乘因此我们的精度不会有影响(最高位往后数17位正好是我们原本的限度),那么我们分析加法,当我们进位的时候当时不会有影响,其他时候会有影响,因为我们可以把每一个位置的所有状态视为同一精度,那么加法是两个同位相加,会影响往前一位,两位,甚至是3位,4位......就是从限度开始少进几,几十,甚至几百位,但是考虑随机数据,我们被卡8位当且仅当你是一个在逃罪犯...

#include<cstdio>
#include<cstring>
#include<iostream>
#define N 222
#define M 140
using namespace std;
typedef double D;
D p[N],t[N][M],f[N][M];
int n,r,d[N];
void Init()
{
scanf("%d%d",&n,&r);
for(int i=;i<=n;i++)
{
scanf("%lf",&p[i]);
scanf("%d",&d[i]);
t[i][]=1.0-p[i];
for(int j=;j<=r;j++)
t[i][j]=t[i][j-]*(1.0-p[i]);
}
for(int i=;i<=r;i++)
f[n][i]=(1.0-t[n][i])*d[n];
}
void work()
{
for(int i=n-;i>;i--)
for(int j=;j<=r;j++)
f[i][j]=t[i][j]*f[i+][j]+(1.0-t[i][j])*(f[i+][j-]+d[i]);
printf("%.10lf\n",f[][r]);
}
int main()
{
freopen("arthur.in","r",stdin);
freopen("arthur.out","w",stdout);
int T;
scanf("%d",&T);
while(T--)
{
Init();
work();
}
return ;
}

BZOJ4008. [HNOI2015]亚瑟王 期望概率dp的更多相关文章

  1. 2018.10.13 bzoj4008: [HNOI2015]亚瑟王(概率dp)

    传送门 马上2点考初赛了,心里有点小紧张. 做道概率dp压压惊吧. 话说这题最开始想错了. 最开始的方法是考虑f[i][j]f[i][j]f[i][j]表示第iii轮出牌为jjj的概率. 然后用第ii ...

  2. BZOJ4008 [HNOI2015]亚瑟王 【概率dp】

    题目链接 BZOJ4008 题解 要求所有牌造成伤害的期望,就是求每一张牌发动的概率\(g[i]\) 我们发现一张牌能否发动,还与其前面的牌是否发动有关 那我们设\(f[i][j]\)表示前\(i\) ...

  3. BZOJ4008: [HNOI2015]亚瑟王(期望dp)

    Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 1952  Solved: 1159[Submit][Status] ...

  4. [HNOI2015]亚瑟王(概率dp)

    题面太长了就不复制了,传送门 一道做了还是很懵逼的题目,感觉以后碰到类似的还是不会,果然HNOI题目很皮. 题解传送 补充一下吧.//感觉他的博客已经写得很好了......Orz 需要的可以两边一起看 ...

  5. bzoj 4008 亚瑟王 期望概率dp

    对于这种看起来就比较傻逼麻烦的题,最关键的就是想怎么巧妙的设置状态数组,使转移尽可能的简洁. 一开始我想的是f[i][j]表示到第j轮第i张牌还没有被选的概率,后来发现转移起来特别坑爹,还会有重的或漏 ...

  6. 概率DP——BZOJ4008 [HNOI2015]亚瑟王

    [HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 ...

  7. 【BZOJ4008】[HNOI2015]亚瑟王 期望

    [BZOJ4008][HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最 ...

  8. BZOJ4008:[HNOI2015]亚瑟王(DP,概率期望)

    Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个 ...

  9. P3239 [HNOI2015]亚瑟王 期望dp

    这个题一看就是期望dp,但是我有个问题,一个事件的期望等于他所有事件可能行乘权值的和吗...为什么我有天考试的时候就不对呢...求大佬解释一下. 至于这道题,f[i][j]代表前i个有j个发动技能,这 ...

随机推荐

  1. 关于Linux中mysql中文乱码

    1.SHOW VARIABLES LIKE 'character_set_%';查看编码集 2.编辑/etc/my.cnf文件 加入这个设置 default-character-set=utf8 (这 ...

  2. Scrapy框架的初步使用

    Scrapy scrapy框架是一个非常全面的爬虫框架,可以说是爬虫界的django了,里面有相当多的组件,格式化组件item,持久化组件pipeline,爬虫组件spider 首先我们要先和djan ...

  3. DedeCMS V5.7sp2最新版本parse_str函数SQL注入漏洞

    织梦dedecms,在整个互联网中许多企业网站,个人网站,优化网站都在使用dede作为整个网站的开发架构,dedecms采用php+mysql数据库的架构来承载整个网站的运行与用户的访问,首页以及栏目 ...

  4. linux基础重要命令小节

    此为L005&&L006课程内容的一个总结. 命令: 基本形式 命令 [参数] [路径或文件] 例:ls -ld /data pwd 目前所在目录 [root@moban /]# pw ...

  5. oracle 开启归档日志模式

    摘自:https://www.jianshu.com/p/f8c0e9309ce2 在默认情况下,oracle数据库是在非归日志档模式中创建的,在非归档日志模式中,进行日志切换时会直接重写redo l ...

  6. Spotlight on MySQL

    聚光灯在MySQL 1.Sessios会话Total Users:总用户数前连接到MySQL服务器的用户会话总数Active Users:活跃用户此控件表示连接到当前正在执行SQL语句或其他数据库请求 ...

  7. mysql字段名与关键字重复解决办法

    mysql 关键字与字段名相同,插入或者修改里会报错 解决办法: 1.改字段名,如果库里面表结构关系不复杂,修改字段名就解决 2.在插入或者修改字段时,字段名加上  ` 包上,注意:这里不是引号,是英 ...

  8. Python网络编程(线程通信、GIL、服务器模型)

    什么是进程.进程的概念? 进程的概念主要有两点: 第一,进程是一个实体.每一个进程都有它自己的地址空间, 一般情况下,包括文本区域(text region).数据区域(data region)和堆栈( ...

  9. docker容器中启动kvm虚拟机

    .安装docker yum install docker systemctl start docker.service systemctl enable docker.service .拉取cento ...

  10. DCGAN: "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Network" Notes

    - Alec Radford, ICLR2016 原文:https://arxiv.org/abs/1511.06434 论文翻译:https://www.cnblogs.com/lyrichu/p/ ...