/**
题目:UVA11082 Matrix Decompressing
链接:https://vjudge.net/problem/UVA-11082
题意:lrj入门经典P374
已知一个矩阵的行数为r,列数为c,前i行的和ai(1<=i<=r),前j列的和bj(1<=j<=c)。
ai,bj都在[1,20]内。求出这个矩阵。 思路:通过前i行的和以及前j列的和,获得每一行的和以及每一列的和。 把每一行看做一个节点,每一列看做一个节点。
建立一个源点到达每一行。
建立一个汇点,每一列到达汇点。
每一行到达每一列。 由于数据范围是[1,20]。流可以说0.所以为了方便处理,所有容量-1.最后结果+1.
那么源点到第i行的容量为r[i]-列数。(每一行有列数个数)
第j列到汇点的容量为c[j]-行数。
第i行到第j列的容量都为19。(20-1) 每一行都经过每一列组成。所以这样建立连接。 如果源点到每一个行节点都是满载。
每一个列节点到汇点都是满载。
那么有解。 解为:
第i行第j列的元素为第i行的节点到第j列的节点的流+1。 */
#include<iostream>
#include<cstring>
#include<vector>
#include<map>
#include<cstdio>
#include<algorithm>
#include<queue>
using namespace std;
const int INF = 0x3f3f3f3f;
typedef long long LL;
const int N = ;
int r[N], c[N];
struct Edge{
int from, to, cap, flow;
Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}
};
struct EdmondsKarp
{
int n, m;
vector<Edge> edges;
vector<int> G[N];
int p[N];
int a[N];
int ans[N][N]; void init(int n)
{
for(int i = ; i <= n; i++) G[i].clear();
edges.clear();
}
void AddEdge(int from,int to,int cap){
edges.push_back((Edge){from,to,cap,});
edges.push_back((Edge){to,from,,});
m = edges.size();
G[from].push_back(m-);
G[to].push_back(m-);
} int Maxflow(int s,int t)
{
int flow = ;
for(;;){
memset(a, , sizeof a);
queue<int>Q;
Q.push(s);
a[s] = INF;
while(!Q.empty()){
int x = Q.front(); Q.pop();
for(int i = ; i < G[x].size(); i++){
Edge& e = edges[G[x][i]];
if(!a[e.to]&&e.cap>e.flow){
p[e.to] = G[x][i];
a[e.to] = min(a[x],e.cap-e.flow);
Q.push(e.to);
}
}
if(a[t]) break;
}
if(!a[t]) break;
for(int u = t; u != s; u = edges[p[u]].from){
edges[p[u]].flow += a[t];
edges[p[u]^].flow -= a[t];
}
flow += a[t];
}
return flow;
} void getMatrix()
{
int r = , c = ;
for(int i = *(n+m); i < edges.size(); i+=){
if(c==m) {
r++, c = ;
}
ans[r][c] = edges[i].flow;
c++;
}
for(int i = ; i < n; i++){
for(int j = ; j < m; j++){
if(j==m-) printf("%d\n",ans[i][j]+);
else printf("%d ",ans[i][j]+);
}
}
}
}; int main()
{
int n, m, T;
scanf("%d",&T);
for(int cas = ; cas <= T; cas++){
scanf("%d%d",&n,&m);
for(int i = ; i < n; i++) scanf("%d",&r[i]);
for(int i = ; i < m; i++) scanf("%d",&c[i]);
for(int i = n-; i > ; i--) r[i] = r[i]-r[i-];
for(int i = m-; i > ; i--) c[i] = c[i]-c[i-];
int s, t;
s = , t = n+m+;
EdmondsKarp ek;
ek.init(t);
///s -> r
for(int i = ; i < n; i++) ek.AddEdge(s,i+,r[i]-m);
///c -> t
for(int i = ; i < m; i++) ek.AddEdge(n+i+,t,c[i]-n);
///r -> c
for(int i = ; i < n; i++){
for(int j = ; j < m; j++){
ek.AddEdge(i+,n+j+,);
}
}
int flow = ek.Maxflow(s,t);
printf("Matrix %d\n",cas);
ek.n = n, ek.m = m;
ek.getMatrix();
}
return ;
}

UVA11082 Matrix Decompressing 最大流建模解矩阵,经典的更多相关文章

  1. UVA-11082 Matrix Decompressing (网络流建模)

    题目大意:给出一个由1到20组成的整数矩阵的每一行和每一列的和,构造这个矩阵.输出任意一个构造方案. 题目分析:将每一行视作一个点x,将每一列视作一个点y.对于矩阵中的每一个格子,都对应一个二元关系& ...

  2. UVA-11082 Matrix Decompressing(有上下界的最大流)

    题目链接: Matrix Decompressing 题意: 给一个矩阵的每行和每列的和,(给的是前i行或者列的和); 矩阵中每个元素的值在1到20之间,找出这样的一个矩阵: 思路: 把它转化成一个二 ...

  3. UVa 11082 Matrix Decompressing(最大流)

    不想吐槽了..sample input 和sample output 完全对不上...调了一个晚上...不想说什么了... -------------------------------------- ...

  4. UVa11082 Matrix Decompressing(最小费用最大流)

    题目大概有一个n*m的矩阵,已知各行所有数的和的前缀和和各列所有数的和的前缀和,且矩阵各个数都在1到20的范围内,求该矩阵的一个可能的情况. POJ2396的弱化版本吧..建图的关键在于: 把行.列看 ...

  5. UVA - 11082 Matrix Decompressing(最大流+行列模型)

    题目大意:给出一个R行C列的矩阵,如今给出他的前1-R行和 && 前1-C列和,问这个矩阵原来是如何的,要求每一个元素大小在1-20之间 解题思路:将每一行连接到超级源点,容量为该行的 ...

  6. uva11082 Matrix Decompressing

    网络流 首先算出每行每列的数的和. 每行的值减去c,每列的值减去R 然后每行和每列之间连边,容量为19. 这样一来,(i,j)的流量相当于(i,j)的值-1. 这样就避免了流量为0不对应答案的尴尬情况 ...

  7. [题解]UVa 11082 Matrix Decompressing

    开始眨眼一看怎么也不像是网络流的一道题,再怎么看也觉得像是搜索.不过虽然这道题数据范围很小,但也不至于搜索也是可以随随便便就可以过的.(不过这道题应该是special judge,因为一题可以多解而且 ...

  8. uva Matrix Decompressing (行列模型)

    Matrix Decompressing 题目:    给出一个矩阵的前i行,前j列的和.要求你求出满足的矩阵. 矩阵的数范围在[1,20].   一開始就坑在了这里.没读细致题目. 囧...   事 ...

  9. UVa 11082 Matrix Decompressing - 网络流

    开始眨眼一看怎么也不像是网络流的一道题,再怎么看也觉得像是搜索.不过虽然这道题数据范围很小,但也不至于搜索也是可以随随便便就可以过的.(不过这道题应该是special judge,因为一题可以多解而且 ...

随机推荐

  1. <摘录>字节对齐(强制对齐以及自然对齐)

    struct {}node; 32为的x86,window下VC下sizeof(node)的值为1,而linux的gcc下值为0: 一.WINDOWS下(VC--其实GCC和其原理基本一样,象这种问题 ...

  2. Ubuntu 14中,Foxmail关联163邮箱账号时,总提示“密码错误”的解决方案

    不知道在什么时候,网易邮箱搞了个“客户端授权密码”功能,也就是说,原先输入自己设置的邮箱密码即可完成登录,但是现在需要输入官方产生的“授权密码”,方可完成登录授权! 相关路径: 设置 -> PO ...

  3. Delphi 通过SQLite3, SQLiteTable3 操作数据库

    var sql, sFile:string; db:TSQLiteDatabase;begin try sFile := G_AppPath + CH_IPC712Db; //if FileExist ...

  4. 用正则把url解析为对象

    用正则把url解析为对象 <!DOCTYPE html><html><head><meta charset="utf-8">< ...

  5. 《新一代视频压缩码标准-H.264_AVC》读书笔记1

    摘要 第一章 绪论 正文 1.一般而言,视频信号信息量大,传输网络所需要的带宽相对较宽.例如,一路可视电话或会议电视信号,由于其活动内容较少,所需带宽较窄,但要达到良好质量,不压缩约需若干 Mbps, ...

  6. [Python爬虫] 之二十四:Selenium +phantomjs 利用 pyquery抓取中广互联网数据

    一.介绍 本例子用Selenium +phantomjs爬取中广互联网(http://www.tvoao.com/select.html)的资讯信息,输入给定关键字抓取资讯信息. 给定关键字:数字:融 ...

  7. [转载] 在Linux中,开机自动运行普通用户的脚本程序

    FROM:http://blog.csdn.net/sinboy/article/details/2466225 FROM:http://www.2cto.com/os/201006/50680.ht ...

  8. .Net使用程序发送邮件时的问题

    在做项目的时候,不可避免的会用到给用户发送邮件的问题,一开始我用的是qq的smtp服务器,但是会出错,不管账号密码,服务器地址端口等怎么配置都是出错.后百度之,发现可能是qq服务器本身就是禁止这个功能 ...

  9. Amixer 控制声音

    amixer set Master XXXX 就可以直接控制主声卡属性 amixer set Master 20 #设置主声卡声音为 20 amixer set Master off #关闭主声卡(静 ...

  10. docker入门——安装及简单操作

    和安装其他软件一样,安装Docker也需要一些基本的前提条件.Docker要求的条件具体如下: 运行64位CPU构架的计算机(目前只能是x86_64和amd64),Docker目前不支持32位CPU. ...