package main

 import (
"fmt"
) type Graphic struct {
edges [][]int
colors int
color []int
flag int
} func (g *Graphic) check(n int) int {
nodes := len(g.edges[])
for i := ; i < nodes; i++ {
if g.color[i] == g.color[n] && i != n && g.edges[i][n] > {
return
}
}
return
} //递归回溯求解
func (g *Graphic) Recuirse(k int) int {
nodes := len(g.edges[])
if k == nodes { //递归经过最后一个顶点,说明找到了一条着色搜索路径, 返回true
return
} else {
for c := ; c <= g.colors; c++ { //对第k个顶点遍历颜色数着色
g.color[k] = c
if g.check(k) > { //若当前颜色合法, 递归寻找第k+1顶点的着色方案
if g.Recuirse(k + ) > { //如果第i+1及以后的所有顶点着色成功, 反馈给第k-1的递归结果
return
}
}
}
return
}
} //迭代回溯求解
func (g *Graphic) Iterate() int {
i :=
nodes := len(g.edges[])
for i >= { //着色失败, 表明第0个顶点遍历paint了所有颜色数, 都失败, 返回消息给虚顶点“-1"
for g.color[i] <= g.colors { //g.color[i],这里i是变化的, 可以表示下一个顶点, 也可以在下一个顶点着色失败时重新定位到前一个顶点, 重新着色
g.color[i]++
if g.check(i) > && i < nodes { //如果该顶点着色合法, i++进入到下一个顶点的着色过程
i++
}
if i == nodes { //最后一个顶点也着色成功, 跳出双循环, 返回true
return
}
}
//第i个顶点遍历着色了所有颜色数, 都失败(g.color[i] > g.colors),使i--, 对i--的八个顶点进行下一颜色的着色过程
g.color[i] =
i--
}
return
} //打印两种实现方法的着色结果
func (g *Graphic) Paint(c int) {
nodes := len(g.edges[])
g.colors = c
g.color = make([]int, nodes)
fmt.Println("recuirse paint:")
if g.Recuirse() > {
for i := ; i < nodes; i++ {
fmt.Print(g.color[i], "\t")
}
} else {
fmt.Println("so solution to paint")
}
g.color = make([]int, nodes)
fmt.Println("\n iterate paint:")
if g.Iterate() > {
for i := ; i < nodes; i++ {
fmt.Print(g.color[i], "\t")
}
} else {
fmt.Println("so solution to paint")
} } func main() {
g := &Graphic{edges: [][]int{{, , , , }, {, , , , }, {, , , , }, {, , , , }, {, , , , }}}
g.Paint()
}

回溯法之k着色问题的更多相关文章

  1. python 回溯法 子集树模板 系列 —— 10、m着色问题

    问题 图的m-着色判定问题 给定无向连通图G和m种不同的颜色.用这些颜色为图G的各顶点着色,每个顶点着一种颜色,是否有一种着色法使G中任意相邻的2个顶点着不同颜色? 图的m-着色优化问题 若一个图最少 ...

  2. 算法java实现--回溯法--图的m着色问题

    (转自:http://blog.csdn.net/lican19911221/article/details/26264471) 图的m着色问题的Java实现(回溯法) 具体问题描述以及C/C++实现 ...

  3. 回溯法 | 图的m着色问题

    学习链接:算法 图的M着色问题 虽然今早9点才醒来,10点才来教室,但是coding得很高效.吃个早餐,拉个粑粑的时间,就把算法书上的[图的m着色]问题看明白了,大脑里也形成了解决问题的框架. 其实这 ...

  4. 图论---图的m-点着色判定问题(回溯法--迭代式)

    转自 图的m着色问题 图的m-着色判定问题——给定无向连通图G和m种不同的颜色.用这些颜色为图G的各顶点着色,每个顶点着一种颜色,是否有一种着色法使G中任意相邻的2个顶点着不同颜色? 图的m-着色优化 ...

  5. 回溯法解决N皇后问题(以四皇后为例)

    以4皇后为例,其他的N皇后问题以此类推.所谓4皇后问题就是求解如何在4×4的棋盘上无冲突的摆放4个皇后棋子.在国际象棋中,皇后的移动方式为横竖交叉的,因此在任意一个皇后所在位置的水平.竖直.以及45度 ...

  6. UVa 129 (回溯法) Krypton Factor

    回溯法确实不是很好理解掌握的,学习紫书的代码细细体会. #include <cstdio> ]; int n, L, cnt; int dfs(int cur) { if(cnt++ == ...

  7. 实现n皇后问题(回溯法)

    /*======================================== 功能:实现n皇后问题,这里实现4皇后问题 算法:回溯法 ============================= ...

  8. HDU 1016 Prime Ring Problem (回溯法)

    Prime Ring Problem Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  9. 从Leetcode的Combination Sum系列谈起回溯法

    在LeetCode上面有一组非常经典的题型--Combination Sum,从1到4.其实就是类似于给定一个数组和一个整数,然后求数组里面哪几个数的组合相加结果为给定的整数.在这个题型系列中,1.2 ...

随机推荐

  1. 【BZOJ4974】字符串大师 KMP

    [BZOJ4974]字符串大师 Description 一个串T是S的循环节,当且仅当存在正整数k,使得S是T^k(即T重复k次)的前缀,比如abcd是abcdabcdab的循环节.给定一个长度为n的 ...

  2. 巨蟒python全栈开发django10:ajax&&登录认证

    通过题目进行知识点回顾: 聚合查询 From django.db.models import Avg,Min,Max,F,Q,Count,Sum #查询书籍的平均值 Ret= Models.Book. ...

  3. AWS入门-1

    对于 Amazon Linux AMI,用户名为 ec2-user. 对于 RHEL AMI,用户名称是 ec2-user 或 root. 对于 Ubuntu AMI,用户名称是 ubuntu 或 r ...

  4. 小程序发送 request请求失败 提示不在合法域名列表中的解决方法

    可以在小程序开发工具中设置不校验域名.

  5. 001-maven下载jar后缀为lastUpdated问题

    问题简述 Maven在下载仓库中找不到相应资源时,网络中断等,会生成一个.lastUpdated为后缀的文件.如果这个文件存在,那么即使换一个有资源的仓库后,Maven依然不会去下载新资源. 解决方案 ...

  6. git发布代码到github

    git是什么? 1.git主要是用于对版本进行管理的一个系统. 2.时刻保持数据完整性:SHA-1计算 3.文件的三种状态 已提交,已修改,已暂存 对应文件流转的三个工作区域:本地仓库,Git的工作目 ...

  7. django基本安装

    一.web框架 1.什么是web框架? Web框架是一种开发框架,用来支持动态网站.网络应用程序及网络服务的开发.其类型有基于请求的和基于组件的两种框架. 本质上其实就是一个socket服务端,用户的 ...

  8. Python 函数名作为字典值

    Python中是没有switch的, 所以有时我们需要用switch的用法, 就只能通过if else来实现了. 但if else写起来比较冗长, 这时就可以使用Python中的dict来实现, 比s ...

  9. docker devise相关错误

    rake aborted!Devise.secret_key was not set. Please add the following to your Devise initializer: con ...

  10. python Selenium库的使用

    一.什么是Selenium selenium 是一套完整的web应用程序测试系统,包含了测试的录制(selenium IDE),编写及运行(Selenium Remote Control)和测试的并行 ...