千万级数据深分页查询SQL性能优化实践
一、系统介绍和问题描述
如何在Mysql中实现上亿数据的遍历查询?先来介绍一下系统主角:关注系统,主要是维护京东用户和业务对象之前的关注关系;并对外提供各种关系查询,比如查询用户的关注商品或店铺列表,查询用户是否关注了某个商品或店铺等。但是最近接到了一个新需求,要求提供查询关注对象的粉丝列表接口功能。该功能的难点就是关注对象的粉丝数量过多,不少店铺的粉丝数量都是千万级别,并且有些大V粉丝数量能够达到上亿级别。而这些粉丝列表数据目前全都存储在Mysql库中,然后通过业务对象ID进行分库分表,所有的粉丝列表数据分布在16个分片的256张表中。同时为了方便查询粉丝列表,同一个业务对象的所有粉丝都会路由到同一张表中,每个表的数据量都能够达到 2 亿+。
二、解决问题的思路和方法
数据库表结构示例如下:
CREATE TABLE follow_fans_[0-255]
(
id bigint(11) NOT NULL AUTO_INCREMENT COMMENT '自增id',
biz_content VARCHAR(50) DEFAULT NULL COMMENT '业务对象ID',
source VARCHAR(50) DEFAULT NULL COMMENT '来源',
pin VARCHAR(50) DEFAULT NULL COMMENT '用户pin',
ext VARCHAR(5000) DEFAULT NULL COMMENT '扩展信息',
status TINYINT(2) DEFAULT 1 COMMENT '状态,0是失效,1是正常',
created_time DATETIME DEFAULT NULL COMMENT '创建时间',
modified_time DATETIME DEFAULT NULL COMMENT '修改时间',
PRIMARY KEY(id),
UNIQUE INDEX uniq_biz_content_pin (biz_content, pin)
)
ENGINE = InnoDB AUTO_INCREMENT = 1 DEFAULT CHARSET = utf8 COMMENT = '关注粉丝表';
Limit实现
由于同一个业务对象的所有粉丝都保存到一张数据库表中,对于分页查询列表接口,首先想到的就是用limit实现,对于粉丝数量很少的关注对象,查询接口性能还不错。但是随着关注对象的粉丝数量越来越多,接口查询性能就会越来越慢。后来经过接口压测,当业务对象粉丝列表数量达到几十万级别的时候,查询页码数量越大,查询耗时越多。limit深分页为什么会变慢?这就和sql的执行计划有关了,limit语句会先扫描offset+n行,然后再丢弃掉前offset行,返回后n行数据。也就是说limit 100000,10
,就会扫描100010行,而limit 0,10
,只扫描10行。查询 sql 示例如下:
select id,biz_content,pin FROM follow_fans_1 where biz_content = #{bizContent} order by id desc limit 10, 10;
- 方案优点:实现简单,支持跳页查询。
- 方案缺点:数据量变大时,随着查询页码的深入,查询性能越来越差。
标签记录法
Limit深分页问题的本质原因就是:偏移量(offset)越大,mysql就会扫描越多的行,然后再抛弃掉,这样就导致查询性能的下降。所以我们可以采用标签记录法,就是标记一下上次查询到哪一条了,下次再来查的时候,从该条开始往下扫描。具体做法方式是,查询粉丝列表中按照自增主键ID倒序查询,查询结果中返回主键ID,然后查询入参中增加maxId参数,该参数需要透传上一次请求粉丝列表中最后一条记录主键ID,第一次查询时可以为空,但是需要查询下一页时就必传。最后根据查询时返回的行数是否等于 10 来判断整个查询是否可以结束。优化后的查询sql参考如下:
select id,biz_content,pin FROM follow_fans_1 where biz_content = #{bizContent} and id < #{lastId} order by id desc limit 10;
- 方案优点:避免了数据量变大时,页码查询深入的性能下降问题;经过接口压测,千万级数据量时,前 N-1页查询耗时可以控制在几十毫秒内。
- 方案缺点:只能支持按照页码顺序查询,不支持跳页,而且仅能保证前 N-1 页的查询性能;如果最后一页的表中行数量不满 10 条时,引擎不知道何时终止查询,只能遍历全表,所以当表中数据量很大时,还是会出现超时情况。
区间限制法
标签记录法最后一页查询超时就是因为不知道何时终止查询,所以我们可以提供一个区间限制范围来告诉引擎查询到此结束。
查询sql再次优化后参考如下:
select id,biz_content,pin FROM follow_fans_1 where biz_content = #{bizContent} and id < #{lastId} and id >={minId} order by id desc limit 10;
由于查询时需要带上 minId 参数,所以在执行查询粉丝列表之前,我们就需要先把 minId 查询出来,查询 sql 参考如下:
select min(id) from follow_fans_1 where biz_content = #{bizContent}
由于表中数据量太大,每个表中总数据量都是上亿级别,导致第一步查询 minId就直接超时了,根本没有机会去执行第二步。但是考虑到上一个查询方案只有最后一页才会查询超时,前N-1页查询根本用不到 minId 作为区间限制。所以当表中数据量很大时,通常从第一页到最后一页查询之间会存在一定的时间差。我们就可以正好去利用这个时间差去异步查询minId,然后将查询出来的minId存储到缓存中,考虑到这个 minId 可能会被删除,可以设置一定的过期时间。最后优化后的查询流程如下:
- 调用查询粉丝列表方法时首先查询缓存minId;
- 如果缓存minId 为空,则创建异步任务去执行select min(id) 查询表中的 minId,然后回写缓存,该异步任务执行时间可能会很长,可以单独设置超时时间。
- 如果缓存minId不为空,则在查询sql中拼接查询条件id >={minId},从而保证查询最后一页时不会超时。
但是在上述方案中,如果表中的数据量达到上亿级别时,第二步的异步获取minId任务还是会存在超时的风险,从而导致查询最后一页粉丝列表出现超时。所以我们又引入了离线数据计算任务,通过在大数据平台离线计算获取每个biz_content下的minId,然后将计算结果minId推送到缓存中。为了保证minId能够及时更新,我们可以自由设置该离线任务的执行周期,比如每周执行一次。通过大数据平台的离线计算minId,从而大大减少了在查询粉丝列表时执行 select min(id)的业务数据库压力。只有当缓存没有命中的时候才去执行 select min(id),通常这些缓存没有命中的 minId 也都是一些被离线任务遗漏的少量数据,不会影响接口的整体查询性能。
- 方案优点:避免了数据量变大时,页码查询深入的性能下降问题;经过接口压测,千万级数据量时,从第一页到最后一页都控制在几十毫秒内。
- 方案缺点:只能支持按照页码顺序和主键ID倒序查询,不支持跳页查询,并且还需要依赖大数据平台离线计算和额外的缓存来存储 minId。
三、对SQL优化治理的思考
通过对以上三种方案的探索实践,发现每一种方案都有自己的优缺点和它的适用场景,我们不能脱离实际业务场景去谈方案的好坏。所以我们要结合实际的业务环境以及表中数据量的大小去综合考虑、权衡利弊,然后找到更适合的技术方案。以下是总结的几条SQL优化建议:
查询条件一定要有索引
索引主要分为两大类,聚簇索引和非聚簇索引,可以通过 explain 查看 sql 执行计划判断查询是否使用了索引。
聚簇索引 (clustered index):聚簇索引的叶子节点存储行记录,InnoDB必须要有且只有一个聚簇索引:
- 如果表定义了主键,则主键索引就是聚簇索引;
- 如果没有定义主键,则第一个非空的唯一索引列是聚簇索引;
- 如果没有唯一索引,则创建一个隐藏的row-id列作为聚簇索引。主键索引查询非常快,可以直接定位行记录。
非聚簇索引 (secondary index):InnoDB非聚簇索引的叶子节点存储的是行记录的主键值,而MyISAM叶子节点存储的是行指针。 通常情况下,需要先遍历非聚簇索引获得聚簇索引的主键ID,然后在遍历聚簇索引获取对应行记录。
正确使用索引,防止索引失效
可以参考以下几点索引原则:
- 最左前缀匹配原则,mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如 a=1 and b=2 and c>3 and d=4 ,如果建立了(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a、b、d的顺序可以任意调整。
- =和in可以乱序,比如 a=1 and b=2 and c=3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮助优化成索引可以识别的形式。
- 尽量选择区分度高德列作为索引,区分度公式count(distinct col)/count(*),表示字段不重复的比例。
- 索引列不能使用函数或参与计算,不能进行类型转换,否则索引会失效。
- 尽量扩展索引,不要新建索引。
减少查询字段,避免回表查询
回表查询就是先定位主键值,在根据主键值定位行记录,需要扫描两遍索引。 解决方案:只需要在一颗索引树上能够获取SQL所需要的所有列数据,则无需回表查询,速度更快。可以将要查询的字段,建立到联合索引里去,这就是索引覆盖。查询sql在进行explain解析时,Extra字段为Using Index时,则触发索引覆盖。没有触发索引覆盖,发生了回表查询时,Extra字段为Using Index condition。
作者:京东零售 曹志飞
来源:京东云开发者社区 转载请注明来源
千万级数据深分页查询SQL性能优化实践的更多相关文章
- MySQL分页查询的性能优化
MySQL limit分页查询的性能优化 Mysql的分页查询十分简单,但是当数据量大的时候一般的分页就吃不消了. 传统分页查询:SELECT c1,c2,cn… FROM table LIMIT n ...
- MySQL 百万级数据量分页查询方法及其优化
方法1: 直接使用数据库提供的SQL语句 语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 LIMIT M,N 适应场景: 适用于数据量较少的情况(元组百/千级) 原因/缺 ...
- MySQL百万级、千万级数据多表关联SQL语句调优
本文不涉及复杂的底层数据结构,通过explain解释SQL,并根据可能出现的情况,来做具体的优化,使百万级.千万级数据表关联查询第一页结果能在2秒内完成(真实业务告警系统优化结果).希望读者能够理解S ...
- 深入MySQL(四):MySQL的SQL查询语句性能优化概述
关于SQL查询语句的优化,有一些一般的优化步骤,本节就介绍一下通用的优化步骤. 一条查询语句是如何执行的 首先,我们如果要明白一条查询语句所运行的过程,这样我们才能针对过程去进行优化. 参考我之前画的 ...
- SQL Server 2016 查询存储性能优化小结
SQL Server 2016已经发布了有半年多,相信还有很多小伙伴还没有开始使用,今天我们来谈谈SQL Server 2016 查询存储性能优化,希望大家能够喜欢 作为一个DBA,排除SQL Ser ...
- 【1】MySQL大数据量分页查询方法及其优化
---方法1: 直接使用数据库提供的SQL语句---语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 LIMIT M,N---适应场景: 适用于数据量较少的情况(元组百/千 ...
- MySQL大数据量分页查询方法及其优化
MySQL大数据量分页查询方法及其优化 ---方法1: 直接使用数据库提供的SQL语句---语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 LIMIT M,N---适 ...
- sql性能优化浅谈
sql性能优化总结: 最近随着数据越来越多,数据库性能问题暴露的越来越严重.几百万,上千万,甚至过亿的数据处理速度会非常的慢. 下面对工作中遇到的问题做下总结,希望以后能对日后的工作有所帮助. 不同的 ...
- SQL性能优化技巧
作者:IT王小二 博客:https://itwxe.com 这里就给小伙伴们带来工作中常用的一些 SQL 性能优化技巧总结,包括常见优化十经验.order by 与 group by 优化.分页查询优 ...
- 想让DBA瞬间崩溃,那就让他去做SQL性能优化
摘要:很多大数据计算都是用 SQL 实现的,跑得慢时就要去优化 SQL,但常常碰到让人干瞪眼的情况. 本文分享自华为云社区<做 SQL 性能优化真是让人干瞪眼>,作者: 石臻臻的杂货铺 . ...
随机推荐
- python 之路,Django rest framework 初探
摘自 金角大王 https://www.cnblogs.com/alex3714/articles/7131523.html Django rest framework介绍 Django REST ...
- Tensorflow 2下载网址
Tensorflow2: 官网:https://tensorflow.google.cn/ 一个核心开源库,可以帮助您开发和训练机器学习模型.您可以通过直接在浏览器中运行 Colab 笔记本来快速上手 ...
- 【Java】按钮数组波纹效果
简介 最近Java学到了布局管理器,看到GridLayout就很有意思,老师说可以做Excel表格什么的,心中突发奇想,于是就想做一个波纹状按钮效果(事后一想可能是我键盘光效的影响-.-),网上一搜, ...
- 聊聊分布式解决方案Saga模式
Saga模式 Saga模式使用一系列本地事务来提供事务管理,而一个本地事务对应一个Saga参与者,在Saga流程里面每一个本地事务只操作本地数据库,然后通过消息或事件来触发下一个本地事务,如果其中一个 ...
- .Net后台调用js,提示、打开新窗体、关闭当前窗体
.Net后台调用js,提示.关闭当前窗体.打开新窗体 Response.Write("<script>window.alert('支付成功!');window.open('/Jk ...
- 记一次线上问题,Netty接收到的报文一次有数据一次没有数据
最近线上遇到一个问题,客户端发送的tcp报文第一次连接成功后没有数据,第二次连接后正常带数据,第三次又没有数据... 问题排查1:是否有负载均衡,其中有一台机器出现了异常,会出现一次成功一次失败的情况 ...
- 效率神器!神级ChatGPT浏览器插件分享
大家好,我是卷了又没卷,薛定谔的卷的AI算法工程师「陈城南」~ 担任某大厂的算法工程师,带来最新的前沿AI知识和工具,欢迎大家交流~,后续我还会分享更多 AI 有趣工具和实用玩法,包括AI相关技术.C ...
- easyexce报错BeanMap$Generator
class net.sf.cglib.core.DebuggingClassWriter overrides final method visit 这两个报错都可以在一起解决,因为这是由于Jar包冲突 ...
- SQL ERVER 表转化为C#实体(SQL 代码)
本文推出SqlServer表转化为实体的sql代码 在VS中有可以自带生成实体类的快捷操作,但是生成的代码比较杂乱,很多东西都是不需要的,一个一个去敲又很浪费时间,关键太无聊了 在闲暇之余写一份代码供 ...
- Spring Loaded代码热更新实践和原理分析
1.引言 开发者在编码效率和快速迭代中的痛点场景包括: 修改代码后,需要频繁重启应用,导致开发效率低下: 实时调试时,不能立即看到代码修改的结果: 大型项目中,重启的时间成本较高. 针对这些问题,本文 ...