• u     |_matrix1x2_{{-0.70710678118654757};{-0.70710678118654735}}
  • x^(1)    |_matrix1x2_{{-0.51805350077523271};{-1.5767841510657621}}
  • x_approx^(1)   |_matrix1x2_{{-1.0474188259204973};{-1.0474188259204971}}
    • X_rec = Z * U(:,1:K)';
  • z^(1)  |_matrix1x2_{{1.4812739091016711};{0}}
    • Ureduce = U(:, 1:K);  
      Z = X * Ureduce;
  • 经过z^(1)的圆:x^{2}+y^{2}=2.194172393785345,发现正好也经过x_approx^(1),说明x^(1)在方向向量u上的投影点x_approx^(1)(二维)距离原点的长度  ==  z^(1)的长度(一维)
    • PCA:特征向量x^(1)从二维 降低 为特征向量z^(1)一维
  • x^(2)  |_matrix1x2_{{0.45915360635654012};{0.83189933545433081}}
  • x_approx^(2)   |_matrix1x2_{{0.64552647090543547};{0.64552647090543525}}
  • z^(2)    |_matrix1x2_{{-0.91291229002530794};{0}}
  • 经过z^(2)的圆:x^{2}+y^{2}=0.833408849279252   (Grapher曲线着色不熟悉,应该为z^2)同色更好分辨)

PCA主成分分析的理解的更多相关文章

  1. 用PCA(主成分分析法)进行信号滤波

    用PCA(主成分分析法)进行信号滤波 此文章从我之前的C博客上导入,代码什么的可以参考matlab官方帮助文档 现在网上大多是通过PCA对数据进行降维,其实PCA还有一个用处就是可以进行信号滤波.网上 ...

  2. 机器学习之PCA主成分分析

    前言            以下内容是个人学习之后的感悟,转载请注明出处~ 简介 在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性.人们自然希望变量个数较少而得到的 信息较多.在很 ...

  3. PCA主成分分析(上)

    PCA主成分分析 PCA目的 最大可分性(最大投影方差) 投影 优化目标 关键点 推导 为什么要找最大特征值对应的特征向量呢? 之前看3DMM的论文的看到其用了PCA的方法,一开始以为自己对于PCA已 ...

  4. [机器学习] PCA主成分分析原理分析和Matlab实现方法

    转载于http://blog.csdn.net/guyuealian/article/details/68487833 网上关于PCA(主成分分析)原理和分析的博客很多,本博客并不打算长篇大论推论PC ...

  5. PCA主成分分析Python实现

    作者:拾毅者 出处:http://blog.csdn.net/Dream_angel_Z/article/details/50760130 Github源代码:https://github.com/c ...

  6. 机器学习 - 算法 - PCA 主成分分析

    PCA 主成分分析 原理概述 用途 - 降维中最常用的手段 目标 - 提取最有价值的信息( 基于方差 ) 问题 - 降维后的数据的意义 ? 所需数学基础概念 向量的表示 基变换 协方差矩阵 协方差 优 ...

  7. PCA(主成分分析)方法浅析

    PCA(主成分分析)方法浅析 降维.数据压缩 找到数据中最重要的方向:方差最大的方向,也就是样本间差距最显著的方向 在与第一个正交的超平面上找最合适的第二个方向 PCA算法流程 上图第一步描述不正确, ...

  8. PCA主成分分析理解

    一.理论概述 1)问题引出 先看如下几张图: 从上述图中可以看出,如果将3个图的数据点投影到x1轴上,图1的数据离散度最高,图3其次,图2最小.数据离散性越大,代表数据在所投影的维度上具有越高的区分度 ...

  9. 关于PCA主成分分析的一点理解

    PCA 即主成分分析技术,旨在利用降维的思想,把多指标转化为少数几个综合指标. 假设目前我们的数据特征为3,即数据维度为三,现在我们想将数据降维为二维,一维: 我们之前的数据其实就是三维空间中的一个个 ...

  10. PCA(主成分分析)的简单理解

    PCA(Principal Components Analysis),它是一种“投影(projection)技巧”,就是把高维空间上的数据映射到低维空间.比如三维空间的一个球,往坐标轴方向投影,变成了 ...

随机推荐

  1. 【转载】Linux虚拟化KVM-Qemu分析(十)之virtio驱动

    原文信息 作者:LoyenWang 出处:https://www.cnblogs.com/LoyenWang/ 公众号:LoyenWang 版权:本文版权归作者和博客园共有 转载:欢迎转载,但未经作者 ...

  2. [Spring+SpringMVC+Mybatis]框架学习笔记(四):Spring实现AOP

    上一章:[Spring+SpringMVC+Mybatis]框架学习笔记(三):Spring实现JDBC 下一章:[Spring+SpringMVC+Mybatis]框架学习笔记(五):SpringA ...

  3. 河南省第十四届icpc大学生程序设计竞赛-clk

    这次比赛赛程比较长,520出发,521,回学校,出发的那一天有点热,感觉不是很好,而且那一天感觉有点生病,应该只是普通感冒,热身赛的时候被oier吊打,省实验真厉害,晚上回酒店后,我喊队友,补了前年的 ...

  4. Mysql生成测试数据函数

    1.查看设置是否允许创建函数系统参数 show variables like 'log_bin_trust_function_creators'; 2.临时设置允许创建函数系统参数 set globa ...

  5. 王道oj/problem15(用c++的引用精简代码)

    网址:http://oj.lgwenda.com/problem/15 思路:子函数的形参是指针的时候格式为 int*&p,且原函数实参为p 主函数使用fgets(字符串的指针,最大容量,st ...

  6. 关于 Task 简单梳理(C#)【并发编程系列】

    〇.前言 Task 是微软在 .Net 4.0 时代推出来的,也是微软极力推荐的一种多线程的处理方式. 在 Task 之前有一个高效多线程操作类 ThreadPool,虽然线程池相对于 Thread, ...

  7. [selenium]点击元素出现的obscure问题

    前言 我们一般使用如下方式点击元素: elem = driver.find_element(...) elem.click() # 或者使用带等待条件的方式 elem = WebDriverWait( ...

  8. MySQL配置简单优化与读写测试

    测试方法 先使用sysbench对默认配置的MySQL单节点进行压测,单表数据量为100万,数据库总数据量为2000万,每次压测300秒. sysbench --db-driver=mysql --t ...

  9. C++类学习心得

    参考文献:https://www.cnblogs.com/xiongxuanwen/p/4290086.html 类的一个重要点是构造函数,其官方说明为: 构造函数是一个特殊的.与类同名的成员函数,用 ...

  10. CSS实现文字描边效果

    一.介绍最近在一个项目的宣传页中,设计师使用了文字描边效果,之前我确实没有实现过文字的描边效果,然后我在查阅资料后,知道了实现方法.文字描边分为两种:内外双描边和单外描边,也就是指在给文字加上描边效果 ...